ORGANIC
LETTERS
2003
Vol. 5, No. 15
2619-2621
Doyle−Kirmse Reaction of Allylic
Sulfides with Diazoalkane-Free
(2-Furyl)carbenoid Transfer
Yumiko Kato, Koji Miki, Fumiaki Nishino, Kouichi Ohe,* and Sakae Uemura*
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering,
Kyoto UniVersity, Sakyo-ku, Kyoto 606-8501, Japan
ohe@scl.kyoto-u.ac.jp; uemura@scl.kyoto-u.ac.jp
Received May 1, 2003
ABSTRACT
In the presence of rhodium catalyst, (2-furyl)carbenoids generated from conjugated ene-yne-carbonyl compounds 1 efficiently undergo carbene
transfer reactions with allylic sulfides followed by [2,3]sigmatropic rearrangement of sulfur ylides to give furan-containing sulfides in good
yields. When diallyl sulfide is employed, heteroatom-containing polycyclic compounds are obtained by sequential intramolecular Diels−Alder
cyclization reaction with a constructed furan ring as an enophile.
The Doyle-Kirmse reaction of allylic sulfides and diazo
compounds ([2,3]sigmatropic rearrangement of sulfur ylides)
Scheme 1
is a powerful synthetic method for creating new C-C
bonds.1,2 The reaction presumably involves carbenoid com-
plexes as intermediates. We report herein the rhodium(II)-
catalyzed Doyle-Kirmse-type reaction using (2-furyl)-
carbenoid precursors 1 without involving the corresponding
diazoalkanes, as shown in Scheme 1. We have already
(1) For reviews, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Compounds: From
Cyclopropanes to Ylides; John Wiley&Sons: New York, 1998. (b) Li, A.-
H.; Dai, L.-X.; Aggarwal, V. K. Chem. ReV. 1997, 97, 2341. (c) Doyle, M.
reported the cyclopropanation of alkenes via (2-furyl)-
P. In ComprehensiVe Organometallic Chemistry II; Hegedus, L. S., Ed.;
carbenoid complexes 2a generated from 1a, which can be
catalyzed by a wide range of transition metal complexes
(Scheme 2).3,4 The following investigation demonstrates the
efficacy of electron-withdrawing groups introduced at the
R1 position of 1, as well as catalysis by a rhodium(II)
Pergamon: Oxford, 1995; Vol. 12, pp 421-468.
(2) For leading references, see: (a) Zhang, X.; Qu, Z.; Ma, Z.; Shi, W.;
Jin, X.; Wang, J. J. Org. Chem. 2002, 67, 5621. (b) Simonneaux, G.;
Galardon, E.; Paul-Roth, C.; Gulea, M.; Masson, S. J. Organomet. Chem.
2001, 617-618, 360. (c) Carter, D. S.; Van Vranken, D. L. Org. Lett. 2000,
2, 1303. (d) Carter, D. S.; Van Vranken, D. L. Tetrahedron Lett. 1999, 40,
1617. (e) Aggarwal, V. K.; Ferrara, M.; Hainz, R.; Spey, S. E. Tetrahedron
Lett. 1999, 40, 8923. (f) Gulea, M.; Marchand, P.; Masson, S.; Saquet, M.;
Collignon, N. Synthesis 1998, 1635. (g) Meyer, O.; Cagle, P. C.; Weickhardt,
K.; Vichard, D.; Gladysz, J. A. Pure Appl. Chem. 1996, 68, 79. (h) Cagle,
P. C.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1994, 117, 3655. (i)
Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. 1981, 46, 5094.
(j) Kirmse, W.; Kapps, M. Chem. Ber. 1968, 101, 994.
(3) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002,
124, 5260. For isolation of chromium (2-furyl)carbenoid, see: Miki, K.;
Yokoi, T.; Nishino, F.; Ohe, K.; Uemura, S. J. Organomet. Chem. 2002,
645, 228. For vinylcarbenoids as related carbenoid species, see: Miki, K.;
Ohe, K.; Uemura, S. Tetrahedron Lett. 2003, 44, 2019.
10.1021/ol034731q CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/24/2003