5390
K. Y. Lee et al. / Tetrahedron Letters 46 (2005) 5387–5391
Shuster, D. J.; Turk, L. A.; Yang, G.; Leftheris, K. J. Med.
Chem. 2003, 46, 2110.
(70 eV) m/z (rel. intensity) 63 (15), 76 (21), 128 (11), 152
(10), 306 (M+, 100).
2. For the synthesis of indazole derivatives, see (a) Lebedev,
A. Y.; Khartulyari, A. S.; Voskoboynikov, A. Z. J. Org.
Chem. 2005, 70, 596; (b) Shirtcliff, L. D.; Weakley, T. J. R.;
Haley, M. M.; Kohler, F.; Herges, R. J. Org. Chem. 2004,
69, 6979; (c) Antilla, J. C.; Baskin, J. M.; Barder, T. E.;
Buchwald, S. L. J. Org. Chem. 2004, 69, 5578; (d) Cheung,
M.; Boloor, A.; Stafford, J. A. J. Org. Chem. 2003, 68, 4093;
(e) Isin, E. M.; de Jonge, M.; Castagnoli, N., Jr. J. Org.
Chem. 2001, 66, 4220; (f) Sun, J.-H.; Teleha, C. A.; Yan,
J.-S.; Rodgers, J. D.; Nugiel, D. A. J. Org. Chem. 1997, 62,
5627; (g) Song, J. J.; Yee, N. K. Org. Lett. 2000, 2, 519; (h)
Alberti, A.; Bedogni, N.; Benaglia, M.; Leardini, R.; Nanni,
D.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Org. Chem.
1992, 57, 607; (i) Lee, J. H.; Matsumoto, A.; Yoshida, M.;
Simamura, O. Chem. Lett. 1974, 951.
Compound 3c: 74%; white solid, mp 108–109 °C; IR (KBr)
1
3055, 1597, 1504 cmꢀ1; H NMR (CDCl3) d 2.37 (s, 3H),
7.08–7.47 (m, 11H), 7.70 (dt, J = 8.4 and 0.9 Hz, 1H), 7.79
(dt, J = 8.7 and 0.9 Hz, 1H); 13C NMR (CDCl3+1 drop of
CF3COOD) d 20.36, 114.55, 119.87, 120.02, 122.58, 123.80,
125.24, 128.39, 128.59, 128.65, 128.67, 128.79, 136.54,
137.12, 138.80, 144.89; FAB Mass 285(M ++1).
Compound 3d: 74%; white solid, mp 125–126 °C; IR (KBr)
1
3059, 1608, 1504 cmꢀ1; H NMR (CDCl3) d 3.79 (s, 3H),
6.89 (d, J = 9.0 Hz, 2H), 7.06–7.12 (m, 1H), 7.23–7.46 (m,
8H), 7.67 (dt, J = 8.7 and 0.9 Hz, 1H), 7.78 (dt, J = 8.7 and
0.9 Hz, 1H); 13C NMR (CDCl3) d 55.39, 114.42, 117.81,
120.75, 121.74, 122.28, 122.33, 126.13, 127.07, 128.27,
129.09, 131.07, 135.49, 140.47, 149.09, 159.73; FAB Mass
301 (M++1).
3. Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2003,
44, 6737.
Compound 3e: 80%; white solid, mp 121–122 °C; IR (KBr)
1
3059, 1597, 1500 cmꢀ1; H NMR (CDCl3) d 3.32 (s, 3H),
4. For DDQ oxidation, see (a) Muller, P.; Rocek, J. J. Am.
Chem. Soc. 1972, 94, 2716; (b) Stoos, F.; Rocek, J. J. Am.
Chem. Soc. 1972, 94, 2719; (c) Thummel, R. P.; Cravey, W.
E.; Cantu, D. B. J. Org. Chem. 1980, 45, 1633; (d) Wurche,
F.; Sicking, W.; Sustmann, R.; Klarner, F.-G.; Ruchardt,
C. Chem. Eur. J. 2004, 10, 2707, and references cited
therein.
5. For hydroxylation and related oxidations with DDQ, see
(a) Xu, Y.-C.; Lebeau, E.; Gillard, J. W.; Attardo, G.
Tetrahedron Lett. 1993, 34, 3841; (b) Ramdayal, F. D.;
Kiemle, D. J.; LaLonde, R. T. J. Org. Chem. 1999, 64,
4607; (c) Zhang, Z.; Magnusson, G. J. Org. Chem. 1996, 61,
2394; (d) Corey, E. J.; Xiang, Y. B. Tetrahedron Lett. 1987,
28, 5403; (e) Tanemura, K.; Suzuki, T.; Nishida, Y.;
Satsumabayashi, K.; Horaguchi, T. J. Chem. Soc., Perkin
Trans. 1 2001, 3230.
6. For the synthesis of Baylis–Hillman adducts of cyclic
enones, see (a) Luo, S.; Mi, X.; Xu, H.; Wang, P. G.;
Cheng, J.-P. J. Org. Chem. 2004, 69, 8413; (b) Lee, K. Y.;
Gong, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23,
659; (c) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahe-
dron Lett. 2004, 45, 5485; (d) Patra, A.; Batra, S.; Joshi, B.
S.; Roy, R.; Kundu, B.; Bhaduri, A. P. J. Org. Chem. 2002,
67, 5783; (e) Aggarwal, V. K.; Dean, D. K.; Mereu, A.;
Williams, R. J. Org. Chem. 2002, 67, 510.
6.83 (d, J = 8.1 Hz, 1H), 7.02–7.10 (m, 2H), 7.21–7.46 (m,
8H), 7.57 (dt, J = 8.4 and 0.9 Hz, 1H), 7.79 (dt, J = 8.7 and
0.9 Hz, 1H); 13C NMR (CDCl3) d 54.72, 111.41, 141.30,
148.87, 156.62, 117.60, 119.03, 120.65, 120.79, 121.90,
122.49, 124.47, 126.65, 127.62, 128.51, 130.55, 131.57,
132.43; FAB Mass 301 (M++1).
Compound 3f: 20%; white solid, mp 109–110 °C; IR (KBr)
1
3059, 2978, 1458 cmꢀ1; H NMR (CDCl3) d 1.63 (s, 9H),
6.93–6.99 (m, 1H), 7.16 (dt, J = 8.4 and 0.9 Hz, 1H), 7.23–
7.29 (m, 1H), 7.39–7.51 (m, 5H), 7.72 (dt, J = 8.7 and
0.9 Hz, 1H); 13C NMR (CDCl3) d 31.54, 63.02, 117.00,
120.12, 121.04, 124.15, 125.84, 128.16, 128.75, 131.06,
132.87, 135.29, 145.97; FAB Mass 251 (M++1).
Compound 3f0: 57%; white solid, mp 111–112 °C; IR (KBr)
1
3178, 1620, 1342 cmꢀ1; H NMR (CDCl3) d 7.19–7.25(m,
1H), 7.34–7.56 (m, 5H), 7.98–8.05 (m, 3H), 11.03 (br s, 1H);
13C NMR (CDCl3) d 110.14, 120.97, 121.12, 121.36, 126.79,
127.67, 128.16, 128.90, 133.54, 141.67, 145.76.
Compound 3g: 69%; oil; IR (KBr) 2954, 2927, 1597,
;
1504 cmꢀ1 1H NMR (CDCl3) d 0.82 (t, J = 7.2 Hz, 3H),
1.21–1.28 (m, 4H), 1.62–1.69 (m, 2H), 3.03 (t, J = 7.5Hz,
2H), 7.04–7.10 (m, 1H), 7.28–7.34 (m, 1H), 7.48–7.55 (m,
5H), 7.67 (dt, J = 8.4 and 0.9 Hz, 1H), 7.71 (dt, J = 8.7 and
0.9 Hz, 1H); 13C NMR (CDCl3) d 13.81, 22.14, 25.23,
29.05, 31.41, 117.56, 120.21, 120.85, 121.02, 126.16, 126.60,
128.85, 129.13, 136.91, 140.07, 148.57; FAB Mass 265
(M++1).
7. Typical experimental procedure and spectroscopic data of
the prepared compounds are as follows. Synthesis of
compound 3a:
A
mixture of pyrazole 2a (130 mg,
Compound 4: 58%; white solid, mp 155–156 °C; IR (KBr)
1
0.47 mmol) and DDQ (216 mg, 0.95mmol) in benzene
(5mL) was heated to reflux for 24 h. After removal of
solvent and chromatographic purification process (hexanes/
ether, 20:1) we obtained 3a as a white solid, 88 mg (69%).
Compound 3a: 69%; white solid, mp 106–107 °C; IR (KBr)
3059, 1624, 1597, 1500 cmꢀ1; 1H NMR (CDCl3) d 7.09–7.15
(m, 1H), 7.32–7.45(m, 11H), 7.70 (dt, J = 8.4 and 1.2 Hz,
1H), 7.81 (dt, J = 8.7 and 0.9 Hz, 1H); 13C NMR (CDCl3) d
117.93, 120.68, 121.92, 122.68, 126.18, 127.16, 128.41,
128.47, 128.92, 129.14, 129.84, 130.07, 135.56, 140.40,
149.17; Mass (70 eV) m/z (rel. intensity) 51 (10), 77 (24),
134 (33), 269 (92), 270 (M+, 100).
3421, 1504, 1369 cmꢀ1; H NMR (CDCl3) d 0.90 (s, 3H),
1.11 (s, 3H), 1.49–1.57 (m, 1H), 1.74 (d, J = 4.8 Hz, OH,
1H, D2O exchangeable), 1.96–2.07 (m, 1H), 2.66–2.78 (m,
1H), 2.85–2.93 (m, 1H), 4.17 (d, J = 4.8 Hz, 1H, converted
into singlet with D2O treatment), 7.22–7.40 (m, 10H); 13C
NMR (CDCl3) d 20.30, 23.93, 25.99, 30.38, 35.27, 70.50,
119.53, 125.18, 127.18, 128.44, 128.66, 128.97, 129.78,
130.15, 140.34, 141.48, 149.28; FAB Mass 319 (M++1).
Compound 5: 61%; white solid, mp 107–108 °C; IR (KBr)
1
3433, 1604, 1504 cmꢀ1; H NMR (CDCl3) d 4.23 (s, 2H),
6.04–6.05(m, 1H), 6.27–6.29 (m, 1H), 7.15–7.27 (m, 3H),
7.34–7.39 (m, 3H), 7.97 (d, J = 7.8 Hz, 1H), 8.04 (d,
J = 7.8 Hz, 1H), 8.11 (br s, 1H, D2O exchangeable); 13C
NMR (CDCl3) d 31.23, 106.55, 110.55, 110.80, 119.04,
119.49, 119.59, 120.15, 120.34, 123.52, 123.65, 125.76,
126.29, 138.54, 139.52, 141.65, 153.36.
Compound 3b: 75%; white solid, mp 160–161 °C; IR (KBr)
3059, 1608, 1520 cmꢀ1; H NMR (CDCl3) d 6.81–6.89 (m,
1
1H), 6.94–7.01 (m, 1H), 7.11–7.17 (m, 1H), 7.31–7.42 (m,
6H), 7.52–7.60 (m, 1H), 7.72 (dt, J = 8.4 and 0.9 Hz, 1H),
7.78 (dt, J = 9.0 and 0.9 Hz, 1H); 13C NMR (CDCl3) d
104.92, 105.24, 105.27, 105.59, 111.99, 112.04, 112.29,
112.34, 117.91, 120.70, 121.06, 122.96, 125.01, 125.06,
125.17, 125.22, 127.51, 128.79, 128.99, 129.10, 129.45,
129.47, 130.27, 130.41, 137.87, 149.63, 155.14, 155.31,
158.54, 158.71, 161.25, 161.39, 164.60, 164.74; Mass
Selected spectroscopic data of starting materials 2g and 2h
are as follows.
Compound 2g: 47%; oil; 1H NMR (CDCl3) d 0.82 (t,
J = 6.9 Hz, 3H), 1.17–1.26 (m, 4H), 1.41–1.48 (m, 2H),
1.75–1.87 (m, 4H), 2.51 (t, J = 6.0 Hz, 2H), 2.60 (t,
J = 7.8 Hz, 2H), 2.73 (t, J = 6.0 Hz, 2H), 7.29–7.45(m,