Page 5 of 7
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
3 G. Gil-Ramírez, D. A. Leigh and A. J. Stephens, Angew. Chem.
fashion with an average distance between the two cores being
3.256 Å (iBDT) and 3.311 Å (BDT) (Fig. S59), leading to the
conclusion that the interaction between them (at this level of
theory) is comparable. The relaxed geometries of the
homodimers of 1 and 2 (M06-2X/6-31G/H2O) shown in Fig. 7 c,d
demonstrate the different conformation adopted by the two
systems: the BDT structure possesses a cavity in which another
aromatic core can be threaded through while the iBDT dimer
adopts a self-complementary geometry which closes the gap
between the π surfaces. In the case of the latter, we postulate
that the presence of the methoxy groups on the same side of
the fused tricyclic system imposes steric demands that prevent
aromatic stacking in aqueous media. Furthermore, calculations
at the same theory level of the enthalpy of formation for each
dimer from its constituent building blocks indicates that the
energy release in the formation of the dimer of 1 is 28.6
Int. Ed., 2015, 54, 6110–6150.
DOI: 10.1039/D0SC04317F
4 C. Dietrich-Buchecker and J.-P. Sauvage, Tetrahedron, 46, 503–
512.
5 J. Pierre. Sauvage and Michael. Ward, Inorg. Chem., 1991, 30,
3869–3874.
6 S. M. Goldup, D. A. Leigh, T. Long, P. R. McGonigal, M. D.
Symes and J. Wu, J. Am. Chem. Soc., 2009, 131, 15924–15929.
7 K. Wang, C.-C. Yee and H. Y. Au-Yeung, Chem. Sci., 2016, 7,
2787–2792.
8 D. A. Leigh, P. J. Lusby, R. T. McBurney, A. Morelli, A. M. Z.
Slawin, A. R. Thomson and D. B. Walker, J. Am. Chem. Soc.,
2009, 131, 3762–3771.
9 C. S. Wood, T. K. Ronson, A. M. Belenguer, J. J. Holstein and J.
R. Nitschke, Nat. Chem., 2015, 7, 354–358.
10 F. Stoddart, W. A. Goddardlll and I. R. Fernando, J Am Chem
Soc, 2016, 10214–10225.
kcal/mol larger than the corresponding value for the 11 D. B. Amabilino, P. R. Ashton, A. S. Reder, N. Spencer and J. F.
Stoddart, Angew. Chem. Int. Ed. Engl., 1994, 33, 433–437.
12 K. Caprice, M. Pupier, A. Kruve, C. A. Schalley and F. B. L.
Cougnon, Chem. Sci., 2018, 9, 1317–1322.
13 P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K.
M. Sanders and S. Otto, Chem. Rev., 2006, 106, 3652–3711.
14 J. Li, P. Nowak, H. Fanlo-Virgós and S. Otto, Chem Sci, 2014, 5,
4968–4974.
15 K. R. West, R. F. Ludlow, P. T. Corbett, P. Besenius, F. M.
Mansfeld, P. A. G. Cormack, D. C. Sherrington, J. M. Goodman,
M. C. A. Stuart and S. Otto, J. Am. Chem. Soc., 2008, 130, 10834–
10835.
16 D. G. Hamilton, N. Feeder, S. J. Teat and J. K. M. Sanders, New
J. Chem., 1998, 22, 1019–1021.
homodimer of 2. The difference in the enthalpies of formation
and in the geometries adopted by the two dimers could be the
reason why the all-donor [2]catenane forms in the DCL of 1 and
is not present in the DCL of 2.
The different outcomes of the DCLs of these isomers show
the powerful nature of DCC, how selective it can be, and how
narrow the barrier between interlocked and non-interlocked
molecules is.
Conclusions
In conclusion, we report herein the synthesis and
characterisation of the first aromatic all-donor [2]catenane
based on a benzodithiophene core using the DCC approach. The
key structural feature is the formation of an extended aromatic
core, quasi-pentacyclic, through a set of strong NH···OMe
hydrogen bonds. The catenation of two BDT dimers happens
only when the hydrophobic effect is increased by the addition
of an inorganic salt. The isomeric iBDT, despite having the same
quasi-pentacyclic fused core does not form [2]catenane due to
the relative position of the two sulphur atoms which change the
stacking geometry of the cores. The all donor [2]catenane is the
first chiral emissive interlocked molecule synthesised via DCC
that can be used in chiroptical applications, which we
endeavour to investigate.
17 K. D. Hänni and D. A. Leigh, Chem Soc Rev, 2010, 39, 1240–
1251.
18 M. J. Langton, J. D. Matichak, A. L. Thompson and H. L.
Anderson, Chem. Sci., 2011, 2, 1897.
19 Y. Sato, R. Yamasaki and S. Saito, Angew. Chem. Int. Ed., 2009,
48, 504–507.
20 A. Inthasot, S.-T. Tung and S.-H. Chiu, Acc. Chem. Res., 2018,
51, 1324–1337.
21 M. Fujita, F. Ibukuro, K. Ogura and H. Hagihara, Nature, 1994,
367, 720–723.
22 D. M. P. Mingos, J. Yau, S. Menzer and D. J. Williams, Angew.
Chem. Int. Ed. Engl., 1995, 34, 1894–1895.
23 D. Quaglio, G. Zappia, E. De Paolis, S. Balducci, B. Botta and F.
Ghirga, Org. Chem. Front., 2018, 5, 3022–3055.
24 F. Vögtle, T. Dünnwald and T. Schmidt, Acc Chem Res, 1996,
29, 451–460.
25 C. A. Hunter, J. Am. Chem. Soc., 1992, 114, 5303–5311.
26 J. M. Mercurio, A. Caballero, J. Cookson and P. D. Beer, RSC
Adv., 2015, 5, 9298–9306.
Conflicts of interest
27 A. Caballero, F. Zapata, N. G. White, P. J. Costa, V. Félix and P.
D. Beer, Angew. Chem. Int. Ed., 2012, 51, 1876–1880.
28 L. C. Gilday and P. D. Beer, Chem. - Eur. J., 2014, 20, 8379–
8385.
29 N. H. Evans, C. J. Serpell and P. D. Beer, Angew. Chem. Int.
Ed., 2011, 50, 2507–2510.
30 M. R. Sambrook, P. D. Beer, J. A. Wisner, R. L. Paul and A. R.
Cowley, J. Am. Chem. Soc., 2004, 126, 15364–15365.
31 N. Ponnuswamy, F. B. L. Cougnon, J. M. Clough, G. D. Pantoş
and J. K. M. Sanders, Science, 2012, 338, 783–785.
32 H. Y. Au-Yeung, G. D. Pantoş and J. K. Sanders, Proc. Natl.
Acad. Sci., 2009, 106, 10466–10470.
There are no conflicts to declare.
Acknowledgements
This work was funded by the EPSRC (DTA TMG, AT) and the
University of Bath (AT). X-ray diffraction, NMR and HRMS
facilities were provided through the Materials and Chemical
Characterisation Facility (MC2), at the University of Bath.
33 F. B. L. Cougnon, N. A. Jenkins, G. D. Pantoş and J. K. M.
Sanders, Angew. Chem. Int. Ed., 2012, 51, 1443–1447.
34 T. Hasell, X. Wu, J. T. A. Jones, J. Bacsa, A. Steiner, T. Mitra,
Notes and references
1 E. Wasserman, J. Am. Chem. Soc., 1960, 82, 4433–4434.
2 E. Wasserman, Sci. Am., 1962, 13.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins