Published on Web 06/27/2003
Synthesis, Electronic Structure, and Electron Transfer
Dynamics of (Aryl)ethynyl-Bridged Donor-Acceptor Systems
Naomi P. Redmore, Igor V. Rubtsov, and Michael J. Therien*
Contribution from the Department of Chemistry, UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104-6323
Received October 17, 2002; Revised Manuscript Received January 30, 2003; E-mail: therien@a.chem.upenn.edu
Abstract: The ET dynamics of a series of donor-spacer-acceptor (D-Sp-A) systems featuring
(porphinato)zinc(II), (aryl)ethynyl bridge, and arene diimide units were investigated by pump-probe
transient absorption spectroscopy. Analysis of these data within the context of the Marcus-Levich-Jortner
equation suggests that the π-conjugated (aryl)ethynyl bridge plays an active role in the charge recombination
(CR) reactions of these species by augmenting the extent of (porphinato)zinc(II) cation radical electronic
delocalization; this increase in cation radical size decreases the reorganization energy associated with
the CR reaction and thereby attenuates the extent to which the magnitudes of the CR rate constants
are solvent dependent. The symmetries of porphyrin-localized HOMO and HOMO-1, the energy gap
between these two orbitals, and D-A distance appear to play key roles in determining whether the (aryl)-
ethynyl bridge simply mediates electronic superexchange or functions as an integral component of the
D and A units.
Introduction
dynamics derive from the π-conjugated nature of the intervening
(aryl)ethynyl bridge and the electronic structure of the high-
lying filled orbitals of the porphyryl and diimide units.
Electron transfer (ET) reactions play fundamental roles in
solar energy conversion. Mechanistic studies of photoinduced
charge separation (CS) and thermal charge recombination (CR)
reactions in covalently linked donor-acceptor (D-A) arrays
have probed how varying magnitudes of thermodynamic
driving force (∆G°), reorganization energy (λ), and electronic
coupling (HAB) control such ET processes.1,2 While there exist
some notable exceptions,3-7 the vast majority of such investiga-
tions involving porphyrin-containing donor-spacer-acceptor
(D-Sp-A) compounds have focused on systems in which the
D, Sp, and A units remain electronically distinct within the
excited and charge-transfer states pertinent to the CS and CR
reactions. Hence, while the D, Sp, and A units of these
assemblies generally feature extensive π-conjugation, design
criteria have typically ensured weak electronic coupling between
these conjugated components;1,2 as a result, relatively little is
known regarding the photophysics and ET dynamics of D-Sp-A
assemblies in which strong electronic coupling mixes D, Sp,
and A electronic states effectively.
This contribution details the potentiometric properties, photo-
physics, and the photoinduced CS and thermal CR dynamics
for a series of ET assemblies comprising a (porphinato)zinc(II)
donor, an (aryl)ethynyl bridge (Sp), and either a pyromellitimide
(PI) or naphthylic diimide (NI) acceptor unit (Figure 1). These
D-Sp-A arrays feature D-to-Sp connectivity in which a meso-
porphyryl-ethyne substituent directly links the conjugated macro-
cycle to the aromatic spacer units.8 We show that this
combination of D, Sp, and A moieties gives rise to atypical
dynamics following the CS events in these systems; these
(1) (a) Wasielewski, M. R.; Niemczyk, M. P.; Svec, W. A.; Pewitt, E. B. J.
Am. Chem. Soc. 1985, 107, 1080-1082. (b) Irvine, M. P.; Harrison, R. J.;
Beddard, G. S. Chem. Phys. 1986, 104, 315-324. (c) Joran, A. D.; Leland,
B. A.; Felker, P. M.; Zewail, A. H.; Hopfield, J. J.; Dervan, P. B. Nature
1987, 327, 508-511. (d) Closs, G. L.; Miller, J. R. Science 1988, 24,
440-446. (e) Finckh, P.; Heitele, H.; Michel-Beyerle, M. E. Chem. Phys.
1989, 138, 1-10. (f) Beratan, D. N.; Onuchic, J. N. AdV. Chem. Ser. 1991,
71-90. (g) Gust, D.; Moore, T. A. Photosynth. Model Sys. 1991, 159,
103-151. (h) Helms, A.; Heiler, D.; McLendon, G. J. Am. Chem. Soc.
1991, 113, 4325-4327. (i) Rodriguez, J.; Kirmaier, C.; Johnson, M. R.;
Friesner, R. A.; Holten, D.; Sessler, J. L. J. Am. Chem. Soc. 1991, 113,
1652-1659. (j) Jordan, K. D.; Paddon-Row, M. N. Chem. ReV. 1992, 92,
395-410. (k) Liu, J.-Y.; Bolton, J. R. J. Phys. Chem. 1992, 96, 1718-
1725. (l) Chambron, J.-C.; Chardon-Noblat, S.; Harriman, A.; Heitz, V.;
Sauvage, J.-P. Pure Appl. Chem. 1993, 65, 2343-2349. (m) Heitele, H.
Angew. Chem., Int. Ed. Engl. 1993, 32, 359-377. (n) Osuka, A.; Nakajima,
S.; Maruyama, K.; Magata, N.; Asahi, T.; Yamazaki, I.; Nishimura, Y.;
Ohno, T.; Nozaki, K. J. Am. Chem. Soc. 1993, 115, 4577-4589. (o)
Farid, R. S.; Chang, I.-J.; Winkler, J. R.; Gray, H. B. J. Phys. Chem. 1994,
98, 5176-5179. (p) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys.
Chem. 1996, 100, 13148-13168. (q) Ha¨berle, T.; Hirsch, J.; Po¨llinger, F.;
Heitele, H.; Michel-Beyerle, M. E.; Anders, C.; Do¨hling, A.; Krieger, C.;
Ru¨ckemann, A.; Staab, H. A. J. Phys. Chem. 1996, 100, 18269-18274.
(r) Paulson, B. P.; Curtiss, L. A.; Bal, B.; Closs, G. L.; Miller, J. R. J. Am.
Chem. Soc. 1996, 118, 378-387. (s) Kuciauskas, D.; Liddell, P. A.;
Hung, S.-C.; Lin, S.; Stone, S.; Seely, G. R.; Moore, A. L.; Moore, T. A.;
Gust, D. J. Phys. Chem. B 1997, 101, 429-440. (t) Roest, M. R.; Oliver,
A. M.; Paddon-Row, M. N.; Verhoeven, J. W. J. Phys. Chem. A 1997,
101, 4867-4871. (u) Sakata, Y.; Imahori, H.; Tsue, H.; Higashida, S.;
Akiyama, T.; Yoshizawa, E.; Aoki, M.; Yamada, K.; Hagiwara, K.;
Taniguchi, S.; Okada, T. Pure Appl. Chem. 1997, 69, 1951-1956. (v)
Macatangay, A. V.; Endicott, J. F.; Song, X. J. Phys. Chem. A 1998, 102,
7537-7540. (w) Jones, G., II; Lu, L. N.; Fu, H. N.; Farahat, C. W.; Oh,
C.; Greenfield, S. R.; Gosztola, D. J.; Wasielewski, M. R. J. Phys. Chem.
B 1999, 103, 572-581. (x) Klumpp, T.; Linsenmann, M.; Larson, S. L.;
Limoges, B. R.; Bu¨rssner, D.; Krissinel, E. B.; Elliott, C. M.; Steiner, U.
E. J. Am. Chem. Soc. 1999, 121, 1076-1087. (y) Page, C. C.; Moser, C.
C.; Chen, X.; Dutton, P. L. Nature 1999, 402, 47-52. (z) Winkler, J. R.;
Di Billo, A. J.; Farrow, N. A.; Richards, J. H.; Gray, H. B. Pure Appl.
Chem. 1999, 71, 1753-1764.
9
10.1021/ja021278p CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 8769-8778
8769