Organometallics 2009, 28, 933–936
933
Organoheteroatom Stannanes in Palladium-Catalyzed
Cross-Coupling Reactions with 1-Naphthyl Triflate
Mariana Bonaterra, Roberto A. Rossi,* and Sandra E. Mart´ın*
INFIQC, Departamento de Qu´ımica Orga´nica, Facultad de Ciencias Qu´ımicas, UniVersidad Nacional de
Co´rdoba, Haya de Torre y Medina Allende, 5000 Co´rdoba, Argentina
ReceiVed October 10, 2008
S, Se, Te) have been used as nucleophiles in synthesis, only a
few examples of their application in cross-coupling reactions
with organic triflates have been reported. The Pd-catalyzed
coupling of enol triflates with (Me3Sn)2 afforded the vinylstan-
nanes regiochemically.7 Furthermore, Pd-mediated C-S8 and
C-Se9 bond forming reactions have been achieved. Other
reported methods include the Pd-catalyzed coupling of aryl
triflates with Ph2P(O)H10 and Ph2PH.11 Shibasaki and co-
workers have described the nickel-catalyzed arsination of
BINOL ditriflate using Ph2AsH for the synthesis of the BINAs
ligand.12 Aryl sulfides have also been obtained by the Pd-
catalyzed reaction of PhSH with ArOTf.13
Summary: We haVe studied the Pd-catalyzed cross-coupling
reaction of organoheteroatom stannanes containing elements
of groups 15 (P, As, Sb) and 16 (Se) with 1-naphthyl triflate
(3). The stannanes n-Bu3SnZPhn (Z ) P, As, Sb, Se; n ) 1, 2)
were synthesized by the reaction of the PhnZ- anion with
n-Bu3SnCl. The cross-coupling reactions of these stannanes with
3 in a one-pot procedure afforded the C-heteroatom products
PhnZ-1-Naph in good yields for Z ) As, Se (90 and 70% yields,
respectiVely) and moderate yields for Z ) P (51% yield). Only
18% of 1-naphthyldiphenylstibine was obtained. Optimization
studies reVealed that the combination of LiCl and free PPh3
ligand proVed to be particularly effectiVe in enhancing the
coupling reaction.
We have developed a versatile methodology that allows for
C-heteroatom bond formation through a cross-coupling Pd-
catalyzed reaction of different electrophiles with the organo-
heteroatom stannanes R3SnZPhn (Z ) P, As, Sb, Se) in a one-
pot, two-step reaction.2e,g,i The in situ generation of the
stannanes R3SnZPhn eliminates the isolation and purification of
tin reagents. To extend the applications of this methodology,
we studied the Pd-catalyzed cross-coupling of organoheteroatom
stannanes containing group 15 (P, As, Sb) and 16 elements (Se)
with 1-naphthyl triflate (Scheme 1). Herein, we report on the
scope and limitations of the organoheteroatom stannanes
R3SnZPhn (Z ) P, As, Sb, Se) in coupling reactions.
The palladium-catalyzed cross-coupling reaction of organic
electrophiles with organostannanes is a widely used methodol-
ogy for C-C1 and C-heteroatom2 bond formation under
conditions compatible with a broad range of functional groups,
the aryl halides being one of the most thoroughly studied
groups.1 However, as organic triflates are readily available, they
have become important coupling partners in synthesis. Stille
and co-workers have studied the scope and limitation of the
cross-coupling reactions of triflates with organostannanes.3 A
number of effective palladium-catalyzed coupling reactions have
been developed for vinyl and aryl triflates as electrophiles.4 An
extensive study of the mechanism of the coupling of triflates
with vinyltributyltin was carried out.5 Also, the rate and
mechanism of the oxidative addition of vinyl triflates was
studied.6
In previous work, we found that the one-pot cross-coupling
reaction of 1-naphthyl triflate (3) with n-Bu3SnAsPh2 (1a)
affords naphthalen-1-yldiphenylarsine (4) in 68% yield.2g Cur-
rently, we decided to study extensively the coupling reaction
It should be noted that, although organotin compounds with
group 14 (Si, Sn, Ge), 15 (N, P, As, Sb), and 16 elements (O,
(4) (a) Fu, J. M.; Snieckus, V. Tetrahedron Lett. 1990, 31, 1665–1668.
(b) Ohe, T.; Miyuara, N.; Suzuki, A. Synlett 1990, 221–222. (c) Saa´, J. M.;
Martorell, G.; Garcia-Raso, A. J. Org. Chem. 1992, 57, 678–685. (d) Farina,
V.; Krishnan, B.; Marshall, D. R.; Roth, G. P. J. Org. Chem. 1993, 58,
5434–5444. (e) Saa´, J. M.; Martorell, G. J. Org. Chem. 1993, 58, 1963–
1966. (f) Dom´ınguez, B.; Pazos, Y.; de Lera, A. R. J. Org. Chem. 2000,
65, 5917–5925.
(5) Casado, A. L.; Espinet, P.; Gallego, A. J. Am. Chem. Soc. 2000,
122, 11771–11782.
(6) Jutand, A.; Ne´gri, S. Organometallics. 2003, 22, 4229–4237.
(7) Winstead, R. C.; Simpson, T. H.; Lock, G. A.; Schiavelli, M. D.;
Thompson, D. W. J. Org. Chem. 1986, 51, 277–279.
(8) Rossi, R.; Bellina, F.; Mannina, L. Tetrahedron 1997, 53, 1025–
1044.
(9) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V.
J. Organomet. Chem. 2000, 605, 96–101.
(10) For some examples, see: (a) Gelpke, A. E. S.; Kooijman, H.; Spek,
A. L.; Hiemstra, H. Chem. Eur. J. 1999, 5, 2472–2482. (b) Vyskoe`yl, S.;
Smre`ina, M.; Hanusˇ, V.; Pola´sˇek, M.; Koe`ovsky´, P. J. Org. Chem. 1998,
63, 7738–7748. (c) Martorell, G.; Garc´ıas, X.; Janura, M.; Saa´, J. M. J.
Org. Chem. 1998, 63, 3463–3467. (d) Kurz, L.; Lee, G.; Morgans, D.;
Waldyke, M. J.; Ward, T. Tetrahedron Lett. 1990, 31, 6321–6424.
(11) Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven,
T. R.; Reider, P. J. J. Org. Chem. 1994, 59, 7180–7181.
(12) Kojima, A.; Boden, C. D. J.; Shibasaki, M. Tetrahedron Lett. 1997,
38, 3459–3460.
* To whom correspondence should be addressed. Tel: 54-351-4334170.
Fax: 54-351-4333030. E-mail: martins@fcq.unc.edu.ar.
(1) Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction;
Paquette, L. A., Ed.; Wiley: New York, 1997; Organic Reactions, Vol. 50.
(2) For some examples of C-N bond formation see: (a) Kim, Y. O.;
Yu, S. J. Am. Chem. Soc. 2003, 125, 1696–1697. (b) Koza, D. J.; Nsiah,
Y. A. J. Org. Chem. 2002, 67, 5025–5027. (c) Paul, F.; Hartwing, J. F.
J. Am. Chem. Soc. 1994, 116, 5969–5970. (d) Guran, A. S.; Buchwald,
S. L. J. Am. Chem. Soc. 1994, 116, 7901–7902. For C-P see: (e) Mart´ın,
S. E.; Bonaterra, M.; Rossi, R. A. J. Organomet. Chem. 2002, 664, 223–
227. (f) Tunney, S. E.; Stille, J. K. J. Org. Chem. 1987, 52, 748–753. For
C-As and C-Sb see: (g) Bonaterra, M.; Mart´ın, S. E.; Rossi, R. A. Org.
Lett. 2003, 15, 2731–2734. For C-S, C-Si, and C-Sn see: (h) Rossi, R. A.;
Mart´ın, S. E. Coord. Chem. ReV. 2006, 250, 575–601. For C-Se see: (i)
Bonaterra, M.; Mart´ın, S. E.; Rossi, R. A. Tetrahedron Lett. 2006, 47, 3511–
3515. (j) Wallner, O. A.; Szabo´, K. M. J. Org. Chem. 2005, 70, 9215–
9221. (k) Nishiyama, Y.; Sonoda, N. Mini-ReV. Org. Chem. 2005, 2, 147–
155. (l) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V.
Tetrahedron Lett. 2003, 44, 7039–7041. (m) Beletskaya, I. P.; Sigeev, A. S.;
Peregudov, A. S.; Petrovskii, P. V. J. Organomet. Chem. 2000, 605, 96–
101. (n) Nishiyama, Y.; Tokunaga, K.; Sonoda, N. Org. Lett. 1999, 1, 1725–
1727.
(3) (a) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984,
106, 4630–4632. (b) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986,
108, 3033–3040. (c) Stille, J. K.; Echavarren, A. M.; Williams, R. M.;
Hendrix, J. A. Org. Synth. 1993, 71, 97–106, and references cited therein.
(13) Mispelaere-Cavinet, C.; Spindler, J.-F.; Perrio, S.; Beslin, P.
Tetrahedron 2005, 61, 5253–5259.
10.1021/om8009816 CCC: $40.75
2009 American Chemical Society
Publication on Web 01/12/2009