1375–1408; (c) J. S. Panek, in Comprehensive Organic Synthesis, eds.
B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 1, pp 579–
627; (d) I. Fleming, J. Dunoguès and R. Smithers, Org. React. (N.Y.),
1989, 37, 57–575; (e) T. A. Blumenkopf and L. E. Overman, Chem.
Rev., 1986, 86, 857–873; (f ) T. H. Chan and I. Fleming, Synthesis, 1979,
761–786; (g) Y. Ie, N. Chatani, T. Ogo, D. R. Marshall, T. Fukuyama,
F. Kakiuchi and S. Murai, J. Org. Chem., 2000, 65, 1475–1488.
2 (a) S. E. Denmark, R. F. Sweis and D. Wehrli, J. Am. Chem. Soc., 2004,
126, 4865–4875; (b) S. E. Denmark and R. F. Sweis, J. Am. Chem. Soc.,
2004, 126, 4876–4882; (c) S. E. Denmark and M. H. Ober, Aldrichimica
Acta, 2003, 36, 75–85; (d) S. E. Denmark and R. F. Sweis, Acc. Chem.
Res., 2002, 35, 835–846; (e) T. Hiyama and E. Shirakawa, Top. Curr.
Chem., 2002, 219, 61–85.
3 (a) S. E. Denmark and S.-M. Yang, Org. Lett., 2001, 3, 1749–1752;
(b) A. G. M. Barrett, J. C. Beall, D. C. Braddock, K. Flack, V. C. Gibson
and M. M. Salter, J. Org. Chem., 2000, 65, 6508–6514; (c) S. Chang and
R. H. Grubbs, Tetrahedron Lett., 1997, 38, 4757–4760.
4 (a) C. Pietraszuk, B. Marciniec and H. Fischer, Tetrahedron Lett.,
2003, 44, 7121–7124; (b) C. Pietraszuk, H. Fischer, M. Kujawa and
B. Marciniec, Tetrahedron Lett., 2001, 42, 1175–1178; (c) A. K.
Chatterjee, J. P. Morgan, M. Scholl and R. H. Grubbs, J. Am. Chem.
Soc., 2000, 122, 3783–3784.
5 (a) K. Oshima, in Science of Synthesis, ed. I. Fleming, Georg Thieme
Verlag, NewYork, 2002, vol. 4, pp 713–756; (b) F. Kakiuchi,A. Yamada,
N. Chatani, S. Murai, N. Furukawa and Y. Seki, Organometallics, 1990,
18, 2033–2036; (c) F. Kakiuchi, Y. Tanaka, N. Chatani and S. Murai, J.
Organomet. Chem., 1993, 456, 45–47.
6 (a) T. Hiyama and T. Kusumoto, in Comprehensive Organic
Synthesis, eds. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991,
vol. 8, pp 769–773; (b) J. L. Speier, Adv. Organomet. Chem., 1979, 17,
407–447.
Fig. 4 Coordinating groups on the silane may also govern the regio-
selectivity of hydrosilylation.
insertion into the Ru–Si bond gives rise to two five-membered
ruthenaoxasilacycle products 16 and 17 depending on the regio-
selectivity of insertion; since that (16) leading to the -regioisomer
suffers from unfavourable steric interactions between the ligands at
the ruthenium centre and the alkyne substituent, a more favourable
pathway via 17 is followed thereby accounting for the preferential
formation of the -regioisomer with this silane.
In summary, we have shown that commercially available
Grubbs’ first-generation metathesis catalyst can be used to mediate
the hydrosilylation of terminal alkynes. In no case did we observe
the presence of cross-metathesis products on analysis of the crude
reaction mixture by GC-MS. The reaction selectivity displays
an interesting reaction concentration dependence and more
significantly, the choice of silane governs the regioselectivity.
Although we have speculated upon possible mechanisms for this
hydrosilylation, future work now needs to be directed towards
validating these mechanistic hypotheses. Deuterium labelling
studies, a thorough kinetics analysis of the reaction, and detailed
NMR experiments, in addition to the identification of side-
products by careful GC-MS analysis of the reaction mixture, will
help shed light on our postulated mechanisms and allow us to
identify favoured pathways. The commercial availability of Grubbs’
catalyst 3, and a number of related ruthenium alkylidene complexes,
combined with their ease of handling, bodes well for the widespread
uptake of these reagents for effecting hydrosilylation reactions. To
this end, we now need to screen other metal alkylidene catalysts for
hydrosilylation activity and further investigate the synthetic scope
of the reaction by investigating other alkynes (including internal
alkynes) and silanes.
7 J. L. Speier, J. A. Webster and G. H. Barnes, J. Am. Chem. Soc., 1957,
79, 974–979.
8 For some recent examples involving Rh complexes: (a) A. Mori,
E. Takahisa, Y. Yamamura, T. Kato, A. P. Mudalige, H. Kajiro,
K. Hirabayashi, Y. Nishihara and T. Hiyama, Organometallics, 2004,
23, 1755–1765; (b) R. Takeuchi and N. Tanouchi, J. Chem. Soc., Perkin
Trans. 1, 1994, 2909–2913; (c) I. Ojima, N. Clos, R. J. Donovan and
P. Ingallina, Organometallics, 1990, 9, 3127–3133; (d) For a compre-
hensive review: I. Ojima, Z. Li and J. Zhu, in The Chemistry of Organo-
silicon Compounds, eds. Z. Rappoport and Y. Apeloig, John Wiley and
Sons, Chichester, 1998, Volume 2, Chapter 29, pp 1687–1792.
9 For some recent examples involving Ru complexes: (a) Y. Kawanami,
Y. Sonoda, T. Mori and K. Yamamoto, Org. Lett., 2002, 4, 2825–2827;
(b) B. M. Trost and Z. T. Ball, J. Am. Chem. Soc., 2001, 123, 12726–
12727; (c) Y. Na and S. Chang, Org. Lett., 2000, 2, 1887–1889.
10 (a) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34,
18–29; (b) A. Fürstner, Angew. Chem., Int. Ed., 2000, 39, 3012–3043;
(c) R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54, 4413–4450;
(d) S. K. Armstrong, J. Chem. Soc., Perkin Trans. 1, 1998, 371–388.
11 B. Alcaide and P. Almendros, Chem. Eur. J., 2003, 9, 1258–1262.
12 S. V. Maifeld, R. L. Miller and D. Lee, Tetrahedron Lett., 2002, 43,
6363–6366.
Experimental
General procedure for hydrosilylation
Grubbs’ catalyst 3 (2.5 or 5 mol%) was added in one portion to
a solution of the alkyne (1.0 equiv.) and the silane (1.2 equiv.)
in toluene (1 M or 0.1 M) and the reaction mixture was heated
at 40 °C. TLC monitoring indicated that the reactions were
generally complete within 10 h. Removal of the solvent under
reduced pressure and purification by silica gel chromatography
(hexane–Et2O eluent) afforded the desired mixture of vinylsilane
products as a colourless oil. No attempts were made to separate the
isomeric mixtures.
13 In subsequent reactions stopping the reaction as soon as all starting
material had been consumed minimised this problem.
14 C–Si bond length ~1.85 Å; C–C bond length ~1.54 Å.
15 (a) T. Murai, F. Kimura, K. Tsutsui, K. Hasegawa and S. Kato, Organo-
metallics, 1998, 17, 926–932; (b) G. Stork, M. E. Jung, E. Colvin and
Y. Noel, J. Am. Chem. Soc., 1974, 96, 3684–3686.
16 (a) J. L. Herrisson and Y. Chauvin, Makromol. Chem., 1970, 141, 161–
176; (b) for a recent discussion of the mechanism of olefin metathesis
see: C. Adlhart and P. Chen, J. Am. Chem. Soc., 2004, 126, 3496–3510.
17 (a) H. Katayama, K. Taniguchi, M. Kobayashi, T. Sagawa, T. Minami
and F. Ozawa, J. Organomet. Chem., 2002, 645, 192–200; (b) S. M.
Maddock, C. E. F. Rickard, W. R. Roper and L. J. Wright, Organo-
metallics, 1996, 15, 1793–1803; (c) C.-H. Jun and R. H. Crabtree, J. Or-
ganomet. Chem., 1993, 447, 177–187; (d) M. A. Esteruelas, J. Herrero
and L. A. Oro, Organometallics, 1993, 12, 2377–2379; (e) R. S. Tanke
and R. H. Crabtree, J. Am. Chem. Soc., 1990, 112, 7984–7989.
18 M. Ulman and R. H. Grubbs, J. Org. Chem., 1999, 64, 7202–7207.
19 B. Schmidt, Synlett, 2004, 1541–1544 and references therein.
20 B. Schmidt, Eur. J. Org. Chem., 2004, 1865–1880.
Acknowledgements
We thank The University of Birmingham for a studentship
(to C. S. A.), Pfizer (unrestricted award to L. R. C.) and a referee
for some very useful suggestions regarding possible mechanisms
of hydrosilylation.
21 A. J. Chalk and J. F. Harrod, J. Am. Chem. Soc., 1965, 87, 16–21.
22 L. W. Chung, Y.-D. Wu, B. M. Trost and Z. T. Ball, J. Am. Chem. Soc.,
2003, 125, 11578–11582.
References
1 (a) I. Fleming, A. Barbero and D. Walter, Chem. Rev., 1997, 97,
2063–2192; (b) E. Langkopf and D. Schinzer, Chem. Rev., 1995, 95,
23 J. M. Brown, Chem. Soc. Rev., 1993, 22, 25–41.
2 5 6 2
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 5 5 8 – 2 5 6 2