Communications
enolate H would be formed with LiN(SiMe3)2 as base
(Figure 1).[10]
In conclusion, we have developed the first enantioselec-
tive Ir-catalyzed allylic substitutions of diphenylimino glyci-
nate 1 by using chiral bidentate ligand 10 (up to 97% ee), and
also succeeded in the diastereoselective asymmetric synthesis
of both diastereomers 4 and 5 by simply switching the base
employed. The influence of the base on diastereoselectivity
and further applications of this asymmetric allylic substitution
are currently under investigation.
[1] Recent review: B. M. Trost, Chem. Pharm. Bull. 2002, 50, 1 – 14;
B. M. Trost, C. B. Lee in Catalytic Asymmetric Synthesis II (Ed.:
I. Ojima), Wiley-VCH, Weinheim, 2000, pp. 593 – 650; T. Hay-
ashi in Catalytic Asymmetric Synthesis (Ed.: I. Ojima), Wiley-
VCH, Weinheim, 2000, p. 193; A. Pfaltz, M. Lautens, Compre-
hensive Asymmetric Catalysis, Vol. 2 (Eds. E. N. Jacobsen, A.
Pfaltz, H. Yamamoto), Springer, Berlin, 1999, pp. 833 – 884.
[2] Y. Matsushima, K. Onitsuka, T. Kondo, T. Mitsudo, S. Takahashi,
J. Am. Chem. Soc. 2001, 123, 10405 – 10406; S.-L. You, X.-Z.
Zhu, Y.-M. Luo, X.-L. Hou, L.-X. Dai, J. Am. Chem. Soc. 2001,
123, 7471 – 7472; G. Helmchen, A. Pfaltz, Acc. Chem. Res. 2000,
33, 336 – 345; A. J. Blacker, M. L. Clarke, M. S. Loft, M. F.
Mahon, M. E. Humphries, J. M. J. Williams, Chem. Eur. J. 2000,
6, 353 – 360; T. Hayashi, J. Organomet. Chem. 1999, 576, 195 –
202; R. PrØtôt, A. Pfaltz, Angew. Chem. 1998, 110, 337 – 339;
Angew. Chem. Int. Ed. 1998, 37, 323 – 325; J. M. J. Williams,
Synlett 1996, 705 – 710.
[3] a) K. Fuji, N. Kinoshita, K. Tanaka, T. Kawabata, Chem.
Commun. 1999, 2289 – 2290; b) B. Bartels, G. Helmchen,
Chem. Commun. 1999, 741 – 742; c) J. P. Janssen, G. Helmchen,
Tetrahedron Lett. 1997, 38, 8025 – 8026.
[4] B. M. Trost, K. Dogra, I. Hachiya, T. Emura, D. L. Hughes, S.
Krska, R. A. Reamer, M. Palucki, N. Yasuda, P. J. Reider, Angew.
Chem. 2002, 114, 2009– 2012; Angew. Chem. Int. Ed. 2002, 41,
1929–1932; F. Glorius, M. Neuburger, A. Pfaltz, Helv. Chim. Acta
2001, 84, 3178– 3196; N.-F. Kaiser, U. Bremberg, M. Larhed, A.
Hallberg, Angew. Chem. 2002, 114, 3742– 3744; Angew. Chem.
Int. Ed. 2000, 39, 3596– 3598; B. M. Trost, S. Hildbrand, K. Dogra,
J. Am. Chem. Soc. 1999, 121, 10416– 10417.
Figure 1. The plausible allyl IrIII complex F.
Experimental Section
[5] G. C. Lloyd-Jones, A. Pfaltz, Angew. Chem. 1995, 107, 534 – 536;
Angew. Chem. Int. Ed. Engl. 1995, 34, 462 – 464; J. Lehmann,
G. C. Lloyd-Jones, Tetrahedron 1995, 51, 8863 – 8874.
General procedure for asymmetric allylic substitution: Method A: A
50% KOH solution (38 mL, 0.51 mmol) was added to a stirred
solution of tert-butyl glycinate benzophenone imine (1; 50 mg,
0.17 mmol), diethyl phosphate 2a’ (46 mg, 0.17 mmol), [{IrCl(cod)}2]
(11 mg, 0.017 mmol), and (R)-10 (14 mg, 0.034 mmol) in dry toluene
(1.4 mL) at 08C under an argon atmosphere, and the resulting
mixture was stirred vigorously at 08C for 20 h. The suspension was
diluted with diethyl ether (15 mL), and the organic phase was washed
with a saturated aqueous soltion of NaHCO3 (2 mL) and brine (2 mL)
and then dried over Na2SO4. After evaporation of the solvent, the
crude product was purified by column chromatography (basic silica
gel, AcOEt/hexane 1/500) to give the desired products 4a (46 mg,
67%) and 5a (11 mg, 15%) as a colorless oil.
[6] a) M. Nakoji, T. Kanayama, T. Okino, Y. Takemoto, Org. Lett.
2001, 3, 3329 – 3331; b) G. Chen, Y. Deng, L. Gong, A. Mi, X. Cui,
Y. Jiang, M. C. K. Choi, A. S. C. Chan, Tetrahedron: Asymmetry
2001, 12, 1567– 1571; c) S.-L. You, X.-L. Hou, L.-X. Dai, B.-X.
Cao, J. Sun, Chem. Commun. 2000, 1933– 1934; d) B. M. Trost, X.
Ariza, J. Am. Chem. Soc. 1999, 121, 10727 – 10737; e) R.
Kuwano, Y. Ito, J. Am. Chem. Soc. 1999, 121, 3236– 3237; f) K.
Hiroi, A. Hidaka, R. Sezaki, Y. Imamura, Chem. Pharm. Bull.
1997, 45, 769 – 777; g) J.-P. Genet, S. Juge, S. Achi, S. Mallart, J. R.
Montes, G. Levif, Tetrahedron 1988, 44, 5263– 5275.
[7] a) M. Nakoji, T. Kanayama, T. Okino, Y. Takemoto, J. Org.
Chem. 2002, 67, 7418 – 7423; b) T. D. Weiß, G. Helmchen, U.
Kazmaier, Chem. Commun. 2002, 1270 – 1271; c) U. Kazmaier,
F. L. Zumpe, Eur. J. Org. Chem. 2001, 4067 – 4076; d) U.
Kazmaier, F. L. Zumpe, Angew. Chem. 2000, 112, 805 – 807;
Angew. Chem. Int. Ed. 2000, 39, 802 – 804; e) U. Kazmaier, F. L.
Zumpe, Angew. Chem. 1999, 111, 1572 – 1574; Angew. Chem. Int.
Ed. 1999, 38, 1468 – 1470; f) B. M. Trost, X. Ariza, Angew. Chem.
1997, 109, 2749 – 2751; Angew. Chem. Int. Ed. Engl. 1997, 36,
2635 – 2637; g) I. C. Baldwin, J. M. J. Williams, R. P. Beckett,
Tetrahedron: Asymmetry 1995, 6, 1515 – 1518.
[8] B. M. Trost, K. Dogra, J. Am. Chem. Soc. 2002, 124, 7256 – 7257.
[9] a) J. Ansell, M. Wills, Chem. Soc. Rev. 2002, 31, 259 – 268;
b) M. T. Reetz, G. Mehler, Angew. Chem. 2000, 112, 4047 – 4049;
Angew. Chem. Int. Ed. 2000, 39, 3889 – 3890; c) S. Deerenberg,
H. S. Schrekker, G. P. F. van Strijdonck, P. C. J. Kamer,
P. W. N. M. van Leeuwen, J. Fraanje, K. Goubitz, J. Org. Chem.
2000, 65, 4810 – 4817; d) C. G. Arena, D. Drommi, F. Faraone,
Tetrahedron: Asymmetry 2000, 11, 2765 – 2779; e) K. Selvaku-
mar, M. Valentini, P. S. Pregosin, A. Albinati, Organometallics
1999, 18, 4591 – 4597; f) V. V. Ovchinnikov, O. A. Cherkasova,
L. V. Verizhnikov, Zh. Obshch. Khim. 1982, 52, 707 – 708.
[10] K. B. Lipkowitz, M. W. Cavanaugh, B. Baker, M. J. O'Donnell, J.
Org. Chem. 1991, 56, 5181 – 5192.
Method B: A solution of 1 (75 mg, 0.25 mmol) in dry THF (1 mL)
was added to a stirred solution of LiN(SiMe3)2 (0.25 mmol) in THF
(0.16 mL) at À788C. After being stirred for 30 min, the mixture was
slowly added to a stirred solution of 2a’ (46 mg, 0.17 mmol),
[{IrCl(cod)}2] (11 mg, 0.017 mmol), and (R)-10 (14 mg, 0.034 mmol)
in dry THF (0.4 mL) at 08C under an argon atmosphere. After
completion of the addition (30 min), the resulting mixture was
quenched with water (2 mL) and diethyl ether (40 mL). The organic
phase was washed with brine (2 mL) and then dried over Na2SO4.
After evaporation of the solvent, the crude product was purified by
column chromatography (basic silica gel, AcOEt/hexane 1/500) to
give 4a (7.0 mg, 10%) and 5a (50 mg, 72%).
The enantioselectivity was determined by chiral HPLC (Daicel
Chiralpak OD-H, iPrOH/hexanes 0.6/99.4, flow rate 0.3 mLminÀ1
,
l = 254 nm, retention times: 4a (major) 26.5 min, (minor) 23.8 min,
5a (major) 27.4 min, (minor) 25.7 min).
Received: November 28, 2002
Revised: February 13, 2003 [Z50654]
Keywords: allylation · amino acids · enantioselectivity · iridium ·
.
P ligands
2056
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 2054 – 2056