3118
C. Crisóstomo-Lucas et al. / Tetrahedron Letters 54 (2013) 3116–3119
Soc. 2005, 127, 12273–12281; (d) Motoyama, Y.; Mikami, Y.; Kawakami, H.;
Aoki, K.; Nishiyama, H. Organometallics 1999, 18, 3584–3588; (e) Small, B. L.;
Brookhart, M. J. Am. Chem. Soc. 1998, 120, 7143–7144; (f) Wanniarachchi, S.;
Liddle, B. J.; Toussaint, J.; Lindeman, S. V.; Bennett, B.; Gardinier, J. R. Dalton
Trans. 2011, 40, 8776–8787; (g) Hollas, A. M.; Gu, W.; Bhuvanesh, N.; Ozerov, O.
V. Inorg. Chem. 2011, 50, 3673–3679; (h) Peris, E.; Loch, J. A.; Mata, J.; Crabtree,
R. H. Chem. Commun. 2001, 201–202; (i) Albrecht, M.; van Koten, G. Angew.
Chem., Int. Ed. Rev. 2001, 40, 3750–3781.
temperature, reaction time, and different bases. By varying the
temperature a notable change in yields is observed from 25% at
50 °C all the way through 96% when the reaction was performed
at 95 °C for 4 h. These results are consistent with the catalytic sys-
tem to be stable. Once the temperature was set to 95 °C, we pro-
ceed to investigate the effect of reaction time. Thus, experiments
were carried out at reduced reaction times from 0.5 h (46% yield)
to 4 h (96% yield) with increases of 0.5 h. The results clearly show
a direct dependence of the yield as a function of time, which in ab-
sence of any additive is consistent with the catalytic system to be
homogeneous. As the Suzuki–Miyaura couplings are strongly
dependant on the base used, several bases that is Li2CO3 (49%
yield), Na2CO3 (95% yield), K2CO3 (65% yield), CaCO3 (0.0% yield),
DIPEA (15% yield), and Et3N (50% yield), were tested under these
optimized conditions. The results obtained reveal that the inor-
ganic bases are more efficient having Na2CO3 with a 95% yield to
biphenyl. Organic bases were also tested showing lowered yields
compared to the inorganic salts. This fact can be due to compe-
tence between the ligand and the amine which upon coordination
with the metallic center may just coordinatively saturate the Pd(II)
avoiding any further catalysis. Although, we assumed the system
to be homogeneous, participation of nano-catalyst cannot be ruled
out in spite of the relatively low reaction temperatures employed.
Thus, in order to confirm the homogeneity of the catalytic system
we performed a catalytic experiment under the optimized condi-
tions but this time adding a couple of drops of elemental mercury19
noticing no appreciable difference in the performance of the cata-
lyst with or without the presence of elemental mercury. Thus, rul-
ing out the participation of palladium nanoparticles.
With the optimized reaction conditions, we completed the
examination of the activity for this catalytic system in the Suzu-
ki–Miyaura cross coupling reactions of some p-substituted bromo-
benzenes. The results are shown in Figure 2. A quick look to this
graphic clearly shows that bromobenzenes including electron
withdrawing substituents led to higher conversions as expected
according to the values of Hammett parameter.20
In summary, we have successfully synthesized a potentially
important set of water soluble pincer ligands and employed them
in Suzuki–Miyaura couplings attaining excellent yields to biphe-
nyls under relatively mild conditions. Noteworthy the fact is that
the reactions are performed in neat water and thus the purification
of the products consists in a mere decantation process. The present
system is interesting given the easiness on the synthesis of the li-
gands form cheap commercially available starting materials. Thus,
turning this system attractive for its potential application in organ-
ic synthesis or other cross coupling reactions. Efforts aimed to
achieve these goals are currently under development in our
laboratories.
3. Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds.;
WILEY-VCH: Germany, 2004.
4. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2427–2483; (b) Suzuki, A. J.
Organomet. Chem. 1999, 576, 147–168; (c) Suzuki, A. J. Organomet. Chem. 2002,
653, 83–90; (d) Bedford, R. B.; Cazin, C. S. J.; Holder, D. Coord. Chem. Rev. 2004,
2419–2440; (e) Frisch, A. C.; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 674–688.
5. (a) Weng, Z.; Koh, L. L.; Hor, T. S. A. J. Organomet. Chem. 2004, 689, 18–24; (b)
Wu, W. Y.; Chen, S. N.; Tsai, F. Y. Tetrahedron Lett. 2006, 47, 9267–9270; (c)
Kostas, I. D.; Coutsolelos, A. G.; Charalambidis, G.; Skondra, A. Tetrahedron Lett.
2007, 48, 6688–6691; (d) Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A.
ChemSusChem 2010, 3, 502–522; (e) Conelly-Espinoza, P.; Morales-Morales, D.
Inorg. Chim. Acta 2010, 363, 1311–1315; (f) Lasri, J.; Mac Leod, T. C. O.;
Pombeiro, A. J. L.; Suzuki, A. Appl. Catal. A 2011, 397, 94–102; (g) Zhou, C.;
Wang, J.; Li, L.; Wang, R.; Hong, M. Green Chem. 2011, 13, 2100–2106; (h) Li, L.;
Wang, J.; Zhou, C.; Wang, R.; Hong, M. Green Chem. 2011, 13, 2071–2077.
6. (a)Green Chemistry Theory and Practice; Anastas, P. T., Warner, J. C., Eds.; Oxford
University Press: New York, 1998; (b) Giinter, K.; Iuser, S.; Richter, S.; Greiner,
P.; Penning, J.; Angricker, M. Environ. Sci. Pollut. Res. 2004, 11, 284–290; (c)
Sheldon, R. A. Green Chem. 2005, 7, 267–278; (d) Sheldon, R. A. Green Chem.
2007, 9, 1273–1283; (e) Tang, S. Y.; Bourne, R. A.; Smith, R. L.; Poliakoff, M.
Green Chem. 2008, 10, 268–269; (f) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010,
39, 301–312; (g) Bourne, R. A.; Poliakoff, M. Mendeleev Commun. 2011, 21, 235–
238.
7. (a) Sinou, D.; Rabeyrin, C.; Nguefack, C. Adv. Synth. Catal. 2003, 345, 357–363;
(b) Rabeyrin, C.; Sinou, D. Tetrahedron: Asymmetry 2003, 14, 3891–3897; (c)
Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591; (d) Liu, S.; Xiao, J. J.
Mol. Catal. A: Chem. 2007, 270, 1–43; (e) Qu, G. R.; Zhao, L.; Wang, D. C.; Wu, J.;
Guo, H. M. Green Chem. 2008, 10, 287–289; (f) Fujita, K.; Kujime, M.; Muraki, T.
Bull. Chem. Soc. Jpn. 2009, 82, 261–266; (g) Diallo, A. K.; Boisselier, E.; Liang, L.;
Ruiz, J.; Astruc, D. Chem. Eur. J. 2010, 16, 11832–11835; (h) Hamasaka, G.; Muto,
T.; Uozumi, Y. Angew. Chem. Int. Ed. 2011, 50, 4876–4878.
8. (a) Shaughnessy, K. H. Chem. Rev. 2009, 109, 643–710; (b)Metal-catalyzed
Reaction in Water; Dixneuf, P. H., Cadierno, V., Eds., 1st ed.; WILEY-VCH:
Germany, 2013.
9. (a) Amengual, R.; Genin, E.; Michelet, V.; Savignac, M.; Genet, J. P. Adv. Synth.
Catal. 2002, 344, 393–398; (b) Otomaru, Y.; Senda, T.; Hayashi, T. Org. Lett.
2004, 6, 3357–3359; (c) Hattori, H.; Fujita, K.; Muraki, T.; Sakaba, A. Tetrahedron
Lett. 2007, 48, 6817–6820; (d) Baskakov, D.; Herrmann, W. A. J. Mol. Catal. A:
Chem. 2008, 283, 166–170.
10. (a) Papadogianakis, G.; Maat, L.; Sheldon, R. A. J. Mol. Catal. A: Chem. 1997, 116,
179–190; (b) Riisager, A.; Eriksen, K. M.; Hjortkjar, J.; Fehrmann, R. J. Mol. Catal.
A: Chem. 2003, 193, 259–272; (c) Huang, R.; Shaughnessy, K. H. Organometallics
2006, 25, 4105–4112; (d) Korthals, B.; Gottker-Schnetmann, I.; Mecking, S.
Organometallics 2007, 26, 1311–1316; (e) Fleckenstein, C.; Plenio, H. Green
Chem. 2008, 10, 563–570.
11. (a) Huang, R.; Shaughnessy, K. H. Chem. Commun. 2005, 4484–4486; (b)
Snelders, D. J. M.; Kreiter, R.; Firet, J.; van Koten, G.; Gebbink, R. J. M. K. Adv.
Synth. Catal. 2008, 350, 262–266; (c) Chen, S. N.; Wu, W. Y.; Tsai, F. Y. Green
Chem. 2009, 11, 269–274.
12. (a) Naghipour, A.; Sabounchei, S. J.; Morales-Morales, D.; Hernández-Ortega, S.;
Jensen, C. M. J. Organomet. Chem. 2004, 689, 2494–2502; (b) Hahn, F. E.; Jahnke,
M. C.; Gomez-Benitez, V.; Morales-Morales, D.; Pape, T. Organometallics 2005,
24, 6458–6463; (c) Baldovino-Pantaleón, O.; Hernández-Ortega, S.; Morales-
Morales Inorg, D. Chem. Commun. 2005, 955–959; (d) Baldovino-Pantaleón, O.;
Hernández-Ortega, S.; Morales-Morales, D. Adv. Synth. Catal. 2006, 348, 236–
242; (e) Gómez-Benítez, V.; Baldovino-Pantaleón, O.; Herrera-Alvarez, C.;
Toscano, R. A.; Morales-Morales, D. Tetrahedron Lett. 2006, 47, 5059–5062; (f)
Naghipour, A.; Sabounchei, S. J.; Morales-Morales, D.; Canseco-González, D.;
Jensen, C. M. Polyhedron 2007, 26, 1445–1448; (g) Gómez-Benıítez, V.;
Hernández-Ortega, S.; Toscano, R. A.; Morales-Morales, D. Inorg. Chim. Acta
2007, 360, 2128–2138; (h) Naghipour, A.; Ghasemi, Z. H.; Morales-Morales, D.;
Serrano-Becerra, J. M.; Jensen, C. M. Polyhedron 2008, 27, 1947–1952; (i)
Solano-Prado, M. A.; Estudiante-Negrete, F.; Morales-Morales, D. Polyhedron
2010, 29, 592–600; (j) Avila-Sorrosa, A.; Estudiante-Negrete, F.; Hernández-
Ortega, S.; Toscano, R. A.; Morales-Morales, D. Inorg. Chim. Acta 2010, 363,
1262–1268.
Acknowledgment
The financial support of this research by CONACYT (F58692)
and DGAPA–UNAM (IN227008) is gratefully acknowledged.
Supplementary data
Supplementary data associated with this article can be found, in
13. 2,6-Bis[(diethanolamine)methyl]pyridine hydrobromide (1:2) (1). The product
is a microcrystalline white solid with mp = 158–160 °C. MS-FAB+. m/z = 336
[M++Na]. Anal. Calcd (%) for C15H29N3O4Br2Á2H2O: C 35.2, H 6.5, N 8.2. Found: C
the
online
version,
at
3
35.1, H 6.3, N 8.0. 1H NMR (DMSO-d6): d 7.71 (t, JH–H = 6 Hz, H, CH), 7.27 (d,
3JH–H = 9 Hz, 2H, CH), 4.72–471 (s, a, 4H, OH), 3.72 (s, 4H, CH2), 3.45–3.42 (m,
8H, CH2), 2.55–2.50 (m, 8H, CH2); 13C{1H} (DMSO-d6): d 158.9 (s, CH), 137.03 (s,
C), 120.9 (s, CH), 60.08 (s, CH2), 58.5 (s, CH2), 56.3 (s, CH2). IR (KBr disc, cmÀ1):
3427–3315 (OH, NH2), 2958–2811 (C–H).
References and notes
1. Anastas, P. T.; Kirchhoff, M. M.; Williamson, T. C. Appl. Catal. A 2001, 221, 3–13.
2. (a)The Chemistry of Pincer Compounds; Morales-Morales, D., Jensen, M. C., Eds.,
1st ed.; Elsevier: Amsterdam, 2007; (b) Slagt, M. Q.; van Zwieten, D. A. P.;
Moerkerk, A. J. C. M.; Klein Gebbink, R. J. M.; van Koten, G. Coord. Chem. Rev.
2004, 248, 2275–2282; (c) Takenaka, Z.; Minakawa, M.; Uozumi, Y. J. Am. Chem.
14. 3,11,17,18-Tetraazatricyclo[11.3.1.15,9]octadeca-1(17),5,7,9(18),13,15-
hexaene,3,11-bis(dihydroxymethylmethyl) hydrobromide (1:2) (2). The
product is a microcrystalline white solid with mp >220 °C decompose. Yield
25% (0.25 g, 4.72 Â 10À4 mol) of (2). MS–ESI+. m/z = 411 [M++Na], m/z = 389