T. Nguyen Van et al. / Tetrahedron Letters 44 (2003) 4199–4201
4201
6. (a) Hepworth, J. D. Comprehensive Heterocyclic Chem-
istry; Pergamon Press: Oxford, 1984; Vol. 3, pp. 799–809;
(b) Hepworth, J. D.; Gabbut, C. D.; Heron, B. M.
Comprehensive Heterocyclic Chemistry, 2nd ed.; Perga-
mon Press: Oxford, 1996.
Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40,
2247–2250; (d) Grigg, R.; Hodgson, A.; Morris, J.; Srid-
haran, V. Tetrahedron Lett. 2003, 44, 1023–1026.
19. General procedure for the ring-closing metathesis of 2-(1-
propenyl)phenyl acrylates 5a–e with Grubbs’ second gen-
7. Jones, G. Organic Reactions; John Wiley & Sons: New
York, 1967; Vol. 15, pp. 204–599.
8. Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J. Org. Chem.
eration catalyst. To
a solution of Grubbs’ second
generation catalyst (0.012 mmol) in CH2Cl2 (10 mL) was
added a solution of 2-(1-propenyl)phenyl acrylates 5a–e
(0.24 mmol) in CH2Cl2 (5 mL). The resulting solution
was stirred at reflux for 24 h. The solvent was evaporated
in vacuo and the residue was purified by flash chromatog-
raphy on silica gel (eluent hexane/EtOAc 4/1) to afford
coumarins 6a–e as a white powder. As an example, the
spectroscopic data of ayapin 6c are given here. (6,7-
Methylenedioxy)coumarin (Ayapin) 6c: 1H NMR
1999, 64, 1033–1035.
9. Knoevenagel, E. Chem. Ber. 1904, 37, 4461–4471.
10. (a) Wiener, C.; Schroeder, C. H.; Link, K. P. J. Am.
Chem. Soc. 1957, 79, 5301–5303; (b) Song, A.; Wang, X.;
Lam, K. S. Tetrahedron Lett. 2003, 44, 1755–1758.
11. (a) Ishii, H.; Ishikawa, T.; Wada, H.; Miyazaki, H.;
Kanenko, Y.; Harayama, T. Chem. Pharm. Bull. 1992,
40, 2614–2619; (b) Harayama, T.; Nakatsuka, K.; Nish-
ioka, H.; Murakami, K.; Hayashida, N.; Ishii, H. Chem.
Pharm. Bull. 1994, 42, 2170–2173; (c) Harayama, T.;
Nakatsuka, K.; Katsuno, K.; Nishioka, H.; Murakami,
K.; Fujii, M.; Hayashida; Takeuchi, Y. Chem. Express
1993, 4, 245–248.
12. (a) Debenedetti, S. L.; Nadinic, E. L.; Gomez, M. A.;
Coussio, J. D.; De Kimpe, N.; Boeykens, M. Phytochem-
istry 1996, 42, 563–564; (b) Debenedetti, S. L.; De
Kimpe, N.; Boeykens, M.; Coussio, J. D.; Kesteleyn, B.
Phytochemistry 1997, 45, 1515–1517; (c) Palacios, P. S.;
Rojo, A. A.; Coussio, J. D.; De Kimpe, N.; Debenedetti,
S. L. Planta Medica 1999, 65, 294–295; (d) Demyttenaere,
J.; Van Syngel, K.; Markusse, A. P.; Vervisch, S.;
Debenedetti, S.; De Kimpe, N. Tetrahedron 2002, 58,
2163–2166; (e) Debenedetti, S. L.; Nadinic, E. L.; Cous-
sio, J. D.; De Kimpe, N.; Boeykens, M. Phytochemistry
1998, 48, 707–710.
13. Van Otterlo, W. A. L.; Ngidi, E. L.; Coyanis, E. M.; de
Koning, C. B. Tetrahedron Lett. 2003, 44, 311–313.
14. An, J.; Bagnell, L.; Cablewski, T.; Strauss, C. R.;
Trainor, R. W. J. Org Chem. 1997, 62, 2505–2511.
15. Kesteleyn, B.; De Kimpe, N. J. Org. Chem. 2000, 65,
640–644.
16. Carda, M.; Rodr´ıguez, S.; Gonza´lez, F.; Castillo, E.;
Villanueva, A.; Marco, J. A. Eur. J. Org. Chem. 2002,
2649–2655.
17. (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001,
34, 18–29; (b) Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413–4696; (c) Furstner, A. Angew. Chem. 2000,
112, 3140–3172; (d) Furstner, A. Angew. Chem., Int. Ed.
Engl. 2000, 39, 3013–3043; (e) Schuster, M.; Blechert, S.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2036–2056.
18. (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs,
R. H. J. Am. Chem. Soc. 2002, 122, 3783–3784; (b)
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 6, 953–956; (c) Scholl, M.; Trnka, T. M.;
(CDCl3) l 6.07 (2H, s, O-CH6 2-O), 6.27 (1H, d, J=9.6
Hz, H-3), 6.82 (1H, s, ꢁCH), 6.83 (1H, s, ꢁCH), 7.58 (1H,
d, J=9.6 Hz, H-4). 13C NMR (CDCl3) l 161.2 (CꢁO),
151.3 (C-6, C-7), 144.9 (C-9), 143.5 (C-4), 113.4 (C-5),
112.7 (C-10), 105.0 (C-3), 102.3 (O-CH2-O), 98.4 (C-8).
IR (KBr): 1707 (CꢁO), 1679, 1632, 1580 cm−1. MS m/z
(%): 190 (M+, 100), 163 (8), 162 (60), 161 (37). Mp:
229–230°C (lit.22a 227–228°C).
20. (a) Macleod, J. K.; Rasmussen; Hasse, B. Phytochemistry
1999, 50, 105–108; (b) Fan, C.; Wang, W.; Wang, Y.;
Qin, G.; Zhao, W. Phytochemistry 2001, 57, 1255–1258;
(c) Dopke, W.; Zaigan, D.; Son, P. T.; Huong, V. N.;
Minh, N. T. Z. Chem. 1990, 30, 375.
21. Coumarin 6e: A solution of Ti(OiPr)4 (0.24 mmol) and
2-(1-propenyl)phenyl acrylate 5e (0.24 mmol) in CH2Cl2
(10 mL) was heated under reflux for 1 h. Then, Grubbs’
second generation catalyst (0.012 mmol) was added to the
solution, and resulting mixture was stirred at reflux for 4
h. The solvent was evaporated in vacuo and the residue
was purified by flash chromatography on silica gel to
1
afford coumarin 6e as a white powder (93%). H NMR
(CDCl3). Mp: 69–70°C (lit.22b 68–70°C).
22. (a) Fukui, K.; Nakayama, M. Bull. Chem. Soc. Jpn. 1962,
35, 1321–1323; (b) The Merck Index 12th ed., Merck &
Co., ISBN 0911910-12-3, 1996.
23. It came to our knowledge at the Flohet conference
(Gainesville, USA, March 10–12, 2003) that the Grubbs
group had independently developed a similar method for
the synthesis of coumarins using RCM. In a personal
communication, Professor R. Grubbs informed us that
their paper was in a status of being in press for publica-
tion in Pure and Applied Chemistry (2003). The latter
paper focussed on coumarins which were not substituted
in the aromatic ring (only substituted at the a,b-unsatu-
rated bond). In that respect, our present results are
complimentary to the results of Grubbs group.