M. Ueda et al. / Tetrahedron Letters 43 (2002) 4369–4371
4371
useful route for synthesis of a variety of primary amines
from the corresponding carbonyl compounds.
1998, 54, 11431–11444. Friestad’s group also reported the
hydrostannation of N-acylhydrazone as aside-reaction in
radical reaction: Friestad, G. K.; Qin, J. J. Am. Chem.
Soc. 2000, 122, 8329–8330.
5. (a) Miyabe, H.; Ueda, M.; Naito, T. J. Org. Chem. 2000,
65, 5043–5047; (b) Miyabe, H.; Ueda, M.; Naito, T.
Chem. Commun. 2000, 2059–2060.
Acknowledgements
6. The cleavage of nitrogen–oxygen bond had been carried
This research was supported by a Grant-in-aid for
Scientific Research (C) from the Ministry of Education,
Culture, Sports, Science and Technology of Japan and
the research grant from the Science Research Promo-
tion Fund of the Japan Private School Promotion
Foundation.
out by LiAlH4 , Mo(CO)6 and hydrogenolysisc. (a)
Kiguchi, T.; Tajiri, K.; Ninomiya, I.; Naito, T. Tetra-
hedron 2000, 56, 5819–5833; (b) Miyabe, H.; Ushiro, C.;
Ueda, M.; Yamakawa, K.; Naito, T. J. Org. Chem. 2000,
65, 176–185; (c) Miyabe, H.; Fujii, K.; Goto, T.; Naito,
T. Org. Lett. 2000, 2, 4071–4074.
a
b
7. In the presence of other Lewis acids (InCl3, MgBr2 or
Yb(OTf)3), the hydrostannation of 1a did not proceed
under the similar reaction conditions.
References
8. Procedure for hydrostannation of 1a (Table 1, entry 5):
To a solution of oxime ether 1a (50 mg, 0.24 mmol) in
CH2Cl2 (5 mL) were added BF3·OEt2 (0.03 mL, 0.24
mmol) and Bu3SnH (0.06 mL, 0.24 mmol). After being
stirred under a nitrogen atmosphere at 20°C for 2 h, the
reaction mixture was diluted with saturated aqueous
NaHCO3 and extracted with CH2Cl2. The organic phase
was dried over MgSO4 and concentrated at reduced
pressure. Purification of the residue by preparative TLC
(hexane:AcOEt=15:1) afforded 2a (48.5 mg, 95%) as a
colorless oil.
1. Review see: Pereyre, M.; Quintard, J. P.; Rahm, A. Tin in
Organic Synthesis; Butterworths: London, 1987.
2. For some recent examples of the hydrostannation of
aldehydes and ketones, see: (a) Castaing, M. D.; Rahm,
A. J. Org. Chem. 1986, 51, 1672–1676; (b) Kawakami, T.;
Shibata, I.; Baba, A.; Matsuda, H. J. Org. Chem. 1993,
58, 7608–7609; (c) Kawakami, T.; Shibata, I.; Baba, A.;
Matsuda, H.; Sonoda, N. Tetrahedron Lett. 1994, 35,
8625–8626; (d) Ooi, T.; Uraguchi, D.; Kagoshima, N.;
Maruoka, K. J. Am. Chem. Soc. 1998, 120, 5327–5328;
(e) Kamiura, K.; Wada, M. Tetrahedron Lett. 1999, 40,
9059–9062; (f) Ooi, T.; Uraguchi, D.; Morikawa, J.;
Maruoka, K. Org. Lett. 2000, 2, 2015–2017; (g) Hiroi, R.;
Miyoshi, N.; Wada, M. Chem. Lett. 2002, 274.
3. (a) Shibata, I.; Suwa, T.; Sugiyama, E.; Baba, A. Synlett
1998, 1081–1082; (b) Suwa, T.; Shibata, I.; Nishino, K.;
Baba, A. Org. Lett. 1999, 1, 1579–1581; (c) Suwa, T.;
Sugiyama, E.; Shibata, I.; Baba, A. Synlett 2000, 556–
558; (d) Suwa, T.; Sugiyama, E.; Shibata, I.; Baba, A.
Synthesis 2000, 556–558.
9. Spectral data of 4b: 1H NMR (CDCl3): l 1.39 (3H, d,
J=6.0 Hz), 4.04 (1H, q, J=6.0 Hz), 4.16 (1H, br s),
6.92–7.42 (10H, m). 13C NMR (CDCl3): l 21.0, 56.8,
120.3, 122.1, 127.2, 127.3, 128.3, 128.9, 143.3, 147.7.
HRMS: calcd for C20H20N2 (M+) 288.1626, found
288.1637.
1
10. Spectral data of 6: H NMR (CDCl3): l 0.89 (3H, br t,
J=6.0 Hz), 1.20–1.60 (6H, m), 2.93 (2H, t, J=7.0 Hz),
4.71 (2H, s), 7.28–7.40 (5H, m). 13C NMR (CDCl3): l
13.9, 22.4, 26.9, 29.2, 52.1, 76.1, 127.6, 128.2, 137.9.
HRMS: calcd for C12H19NO (M+) 193.1466, found
193.1481.
4. We recently reported the hydrostannation of oxime ether
as a side-reaction in radical reaction: Miyabe, H.; Shi-
bata, R.; Sangawa, M.; Ushiro, C.; Naito, T. Tetrahedron