E. Sotelo et al. / Tetrahedron Letters 44 (2003) 4459–4462
4461
Scheme 2.
as a convenient protecting group for the lactam func-
tion in pyridazinone chemistry. The procedure is supe-
rior to existing processes and has allowed access to
several pharmacologically useful pyridazinones through
a short, high yielding synthetic sequence.
reflux (oil bath 110°C) under argon until the starting
material had been consumed. The mixture was cooled
and the suspension was concentrated to dryness under
reduced pressure. The resulting solid was purified by
column chromatography on silica gel (AcOEt/hexane,
1:2). Physical and spectral data for compounds 2: 2a:
Yield: 70%, mp 111–112°C. IR (KBr): 3400, 3100, 1670
cm−1 1H NMR (dimethyl sulfoxide-d6, 300 MHz): 8.19
.
References
(s, 1H, CH), 6.97 (t, J=7.6 Hz, 1H, OH), 5.34 (d,
J=7.6 Hz, 2H, CH2). 13C NMR (CDCl3, 300 MHz):
155.9, 136.8, 136.2, 133.6, 74.9. 2b: Yield: 65%, mp
1. Coelho, A.; Sotelo, E.; Ravin˜a, E. Stille-based
approaches in the synthesis of 6-phenyl-5-substituted-
3(2H)-pyridazinones. Chem. Pharm. Bull. 2003, 51, 417–
430.
138–140°C. IR (KBr): 3100–3000, 1668 cm−1 1H NMR
.
(dimethyl sulfoxide-d6, 300 MHz): 8.13 (s, 1H, CH),
6.93 (t, J=7.3 Hz, 1H, OH), 5.33 (d, J=7.3 Hz, 2H,
CH2). 13C NMR (CDCl3, 300 MHz): 156.24, 137.8,
131.5, 130.6, 75.1.
2. (a) Frank, H., Heinisch, G. In Pharmacologically Active
Pyridazines; Ellis, G. P., West, G. B., Eds. Progress in
Medicinal Chemistry. Elsevier: Amsterdam, 1990; Vol.
27, pp. 1–49; (b) Frank, H.; Heinisch, G. In Pharmaco-
logically Active Pyridazines. Part 2; Ellis, G. P.; Lus-
combe, D. K., Eds. Progress in Medicinal Chemistry.
Elsevier: Amsterdam, 1992; Vol. 29, pp. 141–183.
3. (a) Rohr, M.; Toussaint, D.; Chayer, S.; Mann, A.;
Suffer, J.; Wermuth, C. G.; Enguehard, C.; Hervet, M.;
Allouchi, H.; Debouzy, J. C.; Gueiffier, A. Synthesis
2001, 4, 595–600; (b) Draper, T. L.; Bailey, T. R. J.
Org. Chem. 1995, 60, 748–750; (c) Parrot, I.; Rival, Y.;
Wermuth, C. G. Synthesis 1999, 7, 1163–1168; (d)
Kosˇmrlj, J.; Maes, B. U. W.; Lemie`re, G. L.; Haemers,
A. Synlett 2000, 11, 1581–1584.
4. Greene, T.; Wust, G. P. M. Protective Groups in
Organic Synthesis, 3rd ed.; Wiley: New York, 1999;
Vol. 632.
5. (a) Este´vez, I.; Coelho, A.; Ravin˜a, E. Synthesis 1999,
9, 1666–11670; (b) Coelho, A.; Sotelo, E.; Este´vez, I.;
Ravin˜a, E. Synthesis 2001, 6, 871–876; (c) Za´ra-
Kaczia´n, E.; Matyus, P. Heterocycles 1993, 36, 519–
528.
11. Ripoll, J.; Valle´, Y. Synthesis 1993, 659–677.
12. (a) Miyara, N.; Yanagi, T.; Suzuki, A. Synth. Commun.
1981, 11, 513; (b) Kalinin, V. N. Synthesis 1992, 413;
(c) Tsuji, J. Palladium Reagents and Catalysts; Wiley:
Chichester, 1995.
13. Representative procedure for bis-Suzuki arylations on
compounds 2. A mixture of 2 (1.6 mmol), arylboronic
acid (4 mmol), Pd(PPh3)4 (0.032 mmol) and Na2CO3
(0.67 g, 6.4 mmol) in 3:1 DME/H2O (18 mL) was
flushed with argon for 5 min. The mixture was stirred
and heated under reflux (oil bath 120°C) under argon
until the starting material had been consumed. The
reaction mixture was cooled, the solution was concen-
trated to dryness under reduced pressure and the
residue was purified by column chromatography on sil-
ica gel. Selected physical and spectral data for represen-
tative compounds 3. 4,5-Diphenyl-3(2H)-pyridazinone
(3a): Yield: 86%, mp 135–136°C. IR (KBr): 3100–3000,
1642 cm−1 1H NMR (dimethyl sulfoxide-d6, 300 MHz):
.
13.04 (bs, 1H), 7.74 (s, 1H), 7.04 (m, 6H), 6.95 (m,
4H). 4,5-Bis(4-tolyl)-3(2H)-pyridazinone (3b): Yield:
6. Sotelo, E.; Coelho, A.; Ravin˜a, E. Tetrahedron Lett.
2001, 42, 8633–8636.
90%, mp 147–149°C. IR (KBr): 3100–2923, 1639 cm−1
.
7. (a) Sotelo, E.; Fraiz, N.; Yan˜ez, M.; Laguna, R.; Cano,
E.; Brea, J. E.; Ravin˜a, E. Bioorg. Med. Chem. Lett.
2002, 10, 1575–1577; (b) Sotelo, E.; Fraiz, N.; Ya´n˜ez,
M.; Terrades, V.; Laguna, R.; Cano, E.; Ravin˜a, E.
Bioorg. Med. Chem. 2002, 10, 2873–2882.
8. Maes, B. U. W.; R’kyek, O.; Kosmrlj, J.; Lemie`re, G.
L. F.; Esmans, E.; Rozenski, J.; Dommisse, R. A.;
Haemers, A. Tetrahedron 2001, 57, 1323–1330.
9. Cho, S.; Chung, J.; Choi, W.; Kim, S.; Yoon, Y. J.
Heterocyclic Chem. 1994, 31, 1199–1208.
1H NMR (dimethyl sulfoxide-d6, 300 MHz): 13.16 (bs,
1H), 7.90 (s, 1H), 7.24–7.00 (m, 8H), 2.24 (s, 6H). 4,5-
Bis-(4-chlorophenyl)-3(2H)-pyridazinone (3c): Yield:
78%, mp 156–158°C. IR (KBr): 3500–2924, 1642 cm−1
.
1H NMR (dimethyl sulfoxide-d6, 300 MHz): 13.20 (bs,
1H), 7.96 (s, 1H), 7.64–7.31 (m, 4H), 7.28–6.99 (m,
4H).
14. Selected physical and spectral data for representative
compounds 3. 4,5-Diacetyl-3(2H)-pyridazinone (3f).
Yield: 82%, mp 189–191°C. IR (KBr): 3100–2958, 1690,
10. Representative procedure for the preparation of com-
pounds 2. A mixture of 1 (4.3 mmol) and 35% formal-
dehyde (34 mL, 43 mmol) was flushed with argon for 5
min. The suspension was stirred and heated under
1678 cm−1 1H NMR (dimethyl sulfoxide-d6, 300 MHz):
.
12.25 (s, 1H), 8.12 (s, 1H), 2.45 (s, 3H), 2.42 (s, 3H).
4,5-Bis-[E-(3-oxo-3-phenylpropenyl)]-3(2H)-pyridazinone