Chemical Science
Edge Article
11 M. Sayes, G. Benoit and A. B. Charette, Angew. Chem., Int. Ed., 20 During the evaluation of the scope, we observed that
2018, 57, 13514.
12 T. Ohtani, Y. Tsuchiya, D. Uraguchi and T. Ooi, Org. Chem.
Front., 2019, 6, 1734.
a reverse stoichiometry provided better yields for some
styrenes. See footnote c in Table 2 for experimental details.
21 H. M. L. Davies and S. A. Panaro, Tetrahedron, 2000, 56, 4871.
22 C. Chen, S. F. Zhu, B. Liu, L. X. Wang and Q. L. Zhou, J. Am.
Chem. Soc., 2007, 129, 12616.
13 A. G. Herraiz and M. G. Suero, Synthesis, 2019, 51, 2821.
14 For
photoredox
cyclopropanations
involving
diazo
compounds: (a) F. J. Sarabia and E. M. Ferreira, Org. Lett., 23 M. P. Doyle, D. C. Forbes, M. N. Protopopova, S. A. Stanley,
2017, 19, 2865; (b) P. Li, J. Zhao, L. Shi, J. Wang, X. Shi and M. M. Vasbinder and K. R. Xavier, J. Org. Chem., 1997, 62, 7210.
F. Li, Nat. Commun., 2018, 9, 1972. For alternative 24 (a) Y. Lou, M. Horikawa, R. A. Kloster, N. A. Hawryluk and
´
cyclopropane synthesis by means of visible-light photoredox
E. J. Corey, J. Am. Chem. Soc., 2004, 126, 8916; (b) A. Suarez
catalysis: (c) Y. Zhang, R. Qian, X.-L. Zheng, Y. Zeng, J. Sun,
and G. C. Fu, Angew. Chem., Int. Ed., 2004, 43, 3580.
Y. Chen, A. Ding and H. Guo, Chem. Commun., 2015, 51, 54; 25 M. C. M. Van Oers, L. K. E. A. Abdelmohsen, F. P. J. T. Rutjes
(d) C. Shu, R. S. Mega, B. J. Andreassen, A. Noble and and J. C. M. Van Hest, Chem. Commun., 2014, 50, 4040.
V. K. Aggarwal, Angew. Chem., Int. Ed., 2018, 57, 15430; 26 A. Padwa and S. F. Hornbuckle, Chem. Rev., 1991, 91, 263.
Angew. Chem., 2018, 130, 15656.
27 G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi,
15 For selected recent examples: (a) S. Ventre, F. R. Petronijevic
G. Resnati and G. Terraneo, Chem. Rev., 2016, 116, 2478.
and D. W. C. Macmillan, J. Am. Chem. Soc., 2015, 137, 5654; 28 Two experiments carried out with ethyldiazoacetate (2
(b) T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards,
S. Kawamura, B. D. Maxwell, M. D. Eastgate and P. S. Baran,
Science, 2016, 352, 801; (c) C. P. Johnston, R. T. Smith,
equiv.), Rh2(OAc)4 (1 mol%) and CH2Cl2 or CH3CN as
solvents did not provide the corresponding cyclopropane
analogue to 6d.
S. Allmendinger and D. W. C. MacMillan, Nature, 2016, 536, 29 For examples of biocompatible alkene cyclopropanation
322; (d) J. T. Edwards, R. R. Merchant, K. S. McClymont,
K. W. Knouse, T. Qin, L. R. Malins, B. Vokits, S. A. Shaw,
D.-H. Bao, F.-L. Wei, T. Zhou, M. D. Eastgate and
P. S. Baran, Nature, 2017, 545, 213; (e) C. Li, J. Wang,
L. M. Barton, S. Yu, M. Tian, D. S. Peters, M. Kumar,
A. W. Yu, K. A. Johnson, A. K. Chatterjee, et al., Science, 2017,
356, 1045; (f) J. A. Kautzky, T. Wang, R. W. Evans and
D. W. C. Macmillan, J. Am. Chem. Soc., 2018, 140, 6522; (g)
Y. Liang, X. Zhang and D. W. C. MacMillan, Nature, 2018,
559, 83; (h) S. Ni, N. M. Padial, C. Kingston, J. C. Vantourout,
reactions with diazo compounds, see: (a) P. S. Coelho,
E. M. Brustard, A. Kannan and F. H. Arnold, Science, 2013,
339, 307; (b) M. Bordeaux, V. Tyagi and R. Fasan, Angew.
Chem., Int. Ed., 2015, 54, 1744; Angew. Chem., 2015,, 127,
1764; (c) S. Wallace and E. P. Balskus, Angew. Chem., Int.
Ed., 2015, 54, 7106; Angew. Chem., 2015, 127, 7212; (d)
A. Tinoco, V. Steck, V. Tyagi and R. Fasan, J. Am. Chem.
Soc., 2017, 139, 5293; (e) A. M. Knight, S. B. J. Kan,
R. D. Lewis, O. F. Brandenberg, K. Chen and F. H. Arnold,
ACS Cent. Sci., 2018, 4, 372.
D. C. Schmitt, J. T. Edwards, M. M. Kruszyk, R. R. Merchant, 30 A radical intermediate analogous to int-I has been recently
P. K. Mykhailiuk, B. B. Sanchez, et al., J. Am. Chem. Soc.,
2019, 141, 6726; (i) M. Montesinos-Magraner, M. Costantini,
proposed and detected in a cyclopropanation reaction
using ethyl diazoacetate and I2/Ru(bpy)3Cl2 catalysts under
visible-light irradiation. See ref. 14b.
´
R. Ramırez-Contreras, M. E. Muratore, M. J. Johansson and
A. Mendoza, Angew. Chem., Int. Ed., 2019, 58, 5930. For 31 W. G. McGimpsey and J. C. Scaiano, Can. J. Chem., 1988, 66,
a review: (j) S. Murarka, Adv. Synth. Catal., 2018, 360, 1735. 1474.
16 J. D. Clark, A. S. Shah, J. C. Peterson, L. Patelis, 32 (a) Diiodine is a well-known radical inhibitor of radical chain
R. J. A. Kersten, A. H. Heemskerk, M. Grogan and
S. Camden, Thermochim. Acta, 2002, 386, 65.
17 This hypothesis is in line with the rationalization of Macmillan
reactions: D. P. Curran and C.-T. Chang, Tetrahedron Lett.,
1990, 31, 933; (b) A. Studer and D. P. Curran, Angew.
Chem., Int. Ed., 2016, 55, 58.
to explain the lack of diastereocontrol of a radical attack on 33 M. Silvi, C. Sandford and V. K. Aggarwal, J. Am. Chem. Soc.,
´
a
pi-system: (a) J. L. Jeffrey, F. R. Petronijevic and
2017, 139, 5736.
D. W. C. Macmillan, J. Am. Chem. Soc., 2015, 137, 8404; see 34 The possibility of formation of a photoactive ground-state
also (b) D. Mazzarella, G. E. M. Crisenza and P. Melchiorre,
J. Am. Chem. Soc., 2018, 140, 8439.
18 (a) D. P. Curran and A. E. Gabarda, Tetrahedron, 1999, 55,
3327; (b) T. Ohkita, Y. Tsuchiya and H. Togo, Tetrahedron,
2008, 64, 7247.
charge-transfer complex between i-Pr2EtN and 2a may be
excluded: UV/vis absorption analysis of an equimolar
mixture of i-Pr2EtN and 2a did not show the characteristic
bathochromic shi expected for a charge-transfer complex
(see ESI†).
´
´
19 We believe that the role of aqueous NaCl is to quench 35 (a) Y. Shen, J. Cornella, F. Julia-Hernandez and R. Martin, ACS
possible water-soluble sub-products formed during the
reaction, whose absorption reduces the number of
Catal., 2017, 7, 409. For related photochemical generation of
radical species with activated alkyl halides via charge-transfer
or electron donor–acceptor complexes see: (b) E. Arceo,
available
photons
and
the
progress
of
the
´
´
photocyclopropanation. The sub-products could come
I. D. Jurberg, A. Alvarez-Fernandez and P. Melchiorre, Nat.
Chem., 2013, 5, 750; (c) X. Sun, W. Wang, Y. Li, J. Ma and
S. Yu, Org. Lett., 2016, 18, 4638; (d) Y. Wang, J. Wang, G. X. Li,
G. He and G. Chen, Org. Lett., 2017, 19, 1442; and ref. 19.
¨
from the decomposition of Hunig's base.
A similar
observation has been recently found by Bach et al.:
¨
A. Bohm and T. Bach, Chem.–Eur. J., 2016, 22, 15921.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2019