4262
A. Shashidhar Kumar et al. / Tetrahedron Letters 44 (2003) 4261–4263
acids) in three steps, using Birch reduction and
ozonolysis.6
Tetrahedron Lett. 1989, 30, 5053–5056; (k) Comins, D. L.;
Killpack, M. O.; Despagnet, E.; Zeller, E. Heterocycles
2002, 58, 505–519.
Compound 4 is commercially available and can also be
3. (a) Renault, O.; Guillon, J.; Dallemagne, P.; Rault, S.
Tetrahedron Lett. 2000, 41, 681–683; (b) Leflemme, N.;
Dallemagne, P.; Rault, S. Tetrahedron Lett. 2001, 42,
8997–8999.
easily prepared from -(−)-phenylalanine in three steps.
L
L
-(−)-phenylalanine 2 was converted to N-Boc-methyl
ester 3 in the presence of acetyl chloride and methanol
followed by treatment with (Boc)2O. The resultant ester
3 was reduced to alcohol 4 using LiBH4. Birch reduc-
tion of 4 gave the corresponding dihydro derivative 5
which on ozonolysis followed by quenching the resul-
tant ozonide with H2/Pd(OH)2 yielded the b-keto alde-
hyde 6. Compound 6 without isolation was subjected to
acid-catalysed cyclisation to give the dihydro-4-pyridi-
none 1.7
4. (a) Yuan, Y.; Li, X.; Ding, K. Org. Lett. 2002, 4, 3309–
3311; (b) Carruthers, W. Cycloaddition Reactions In
Organic Synthesis; Pergamon: Oxford, 1990; (c) Oppolzer,
W. In Comprehensive Organic Synthesis; Paquette, L. A.,
Ed.; Pergamon: Oxford, 1991; Vol. 5, p. 315; (d) Weinreb,
S. M. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Hetero Dienophile Addition to Dienes,
Pergamon: Oxford, 1991; Vol. 5, p. 401; (e) Waldmann, H.
Synthesis 1994, 535–551; (f) Collin, J.; Jaber, N.; Lannou,
M. I. Tetrahedron Lett. 2001, 42, 7405–7407; (g) Badorrey,
R.; Cativiela, C.; Diaz-de-villegas, M. D.; Galvez, J. A.
Tetrahedron 2002, 58, 341–354; (h) Avenoza, A.; Busto, J.
H.; Cativiela, F. C.; Peregrina, J. M.; Zurbano, M. M. J.
Org. Chem. 2002, 67, 598–601; (i) Badorrey, R.; Cativiela,
C.; Diaz-de-Villegas, M. D.; Galvez, J. A. Tetrahedron
Lett. 1997, 38, 2547–2550.
This method is novel and general in nature to obtain
the skeleton of a 2,3-dihydro-4-piperidinone, by using
an appropriate amino-aryl precursor.
Acknowledgements
5. (a) Sugiyama, N.; Yamamoto, M.; Kashima, C. Bull.
Chem. Soc. Jpn. 1970, 43, 901–904 and references cited
therein; (b) Leflemme, N.; Dallemagne, P.; Rault, S. Syn-
thesis 2002, 1740–1746.
A.S.K. thanks the CSIR, New Delhi for a research
fellowship (S.R.F.). One of the authors (B.H.) thanks
the UGC, New Delhi for financial assistance. We also
thank Dr. J. S. Yadav and Dr. G. V. M. Sharma for
their support and encouragement.
6. For Birch reduction and ozonolysis, see: (a) Rao, B. V.;
Rao, A. S. Synth. Commun. 1995, 25, 1531–1543; (b)
Birch, A. J.; Fitton, P.; Smith, D. C. C.; Steere, D. E.;
Stelfox, A. R. J. Chem. Soc. 1963, 2209–2216; (c) Kirkeno,
C. L.; White, J. D. J. Org. Chem. 1985, 50, 1316–1319; (d)
Bringmann, G. Liebigs Ann. Chem. 1985, 2105–2115; (e)
Evans, D. A.; Gauchet-prunet, J. A.; Carreira, E. M.;
Charette, A. B. J. Org. Chem. 1991, 56, 741–750; (f) Wipf,
P.; Lim, S. J. Am. Chem. Soc. 1995, 117, 558–559; (g)
Wipf, P.; Reeves, J. T. Chem. Commun. 2002, 2066–2067.
7. Typical experimental procedure: (2S)-2-(hydroxymethyl)-
N-(tert-butoxycarbonyl)-2,3-dihydro-4-pyridone, 1
References
1. (a) Coutts, R. T.; Scott, J. R. Can. J. Pharm. Sci. 1971, 6,
78–84; (b) Broom, J. D.; Foley, M. A.; Comins, D. L. J.
Am. Chem. Soc. 1988, 110, 7445–7447 and references cited
therein; (c) Comins, D. L.; Fulp, A. B. Org. Lett. 1999, 1,
1941–1943; (d) Stout, D. M.; Meyers, A. I. Chem. Rev.
1982, 82, 223–243; (e) Sausins, A.; Duburs, G. Heterocy-
cles 1988, 27, 291–314; (f) Comins, D. L.; O’Connor, S.
Adv. Heterocycl. Chem. 1988, 44, 199–267; (g) Yamaguchi,
R.; Hata, E.; Matsuki, T.; Kawanisi, M. J. Org. Chem.
1987, 52, 2094–2096; (h) Ogawa, M.; Natsume, M. Hetero-
cycles 1985, 23, 831–834; (i) Natsume, M.; Utsunomiya, I.;
Yamaguchi, K.; Sakai, S. Tetrahedron 1985, 41, 2115–
2123; (j) Ferles, M.; Pliml, J. Adv. Heterocycl. Chem. 1970,
12, 43–101; (k) Comins, D. L.; Williams, A. L. Tetra-
hedron Lett. 2000, 41, 2839–2842; (l) Comins, D. L.;
Brooks, C. A.; Ingalls, C. L. J. Org. Chem. 2001, 66,
2181–2182.
2. (a) Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1986,
27, 4549–4552; (b) Comins, D. L.; Killpack, M. O. J. Am.
Chem. Soc. 1992, 114, 10972–10974; (c) Comins, D. L.;
Josef, S. P.; Goehring, R. R. J. Am. Chem. Soc. 1994, 116,
4719–4728; (d) Comins, D. L.; Fulp, A. B. Tetrahedron
Lett. 2001, 42, 6839–6841; (e) Comins, D. L.; Green, G.
M. Tetrahedron Lett. 1999, 40, 217–218; (f) Comins, D. L.;
Zeller, E. Tetrahedron Lett. 1991, 32, 5889–5892; (g)
Comins, D. L.; Sandelier, M. J.; Grillo, T. A. J. Org.
Chem. 2001, 66, 6829–6832; (h) Brown, J. D.; Foley, M.
A.; Comins, D. L. J. Am. Chem. Soc. 1988, 110, 7445–
7447; (i) Comins, D. L.; Foley, M. A. Tetrahedron Lett.
1988, 29, 6711–6714; (j) Comins, D. L.; LaMunyon, D. H.
To a solution of lithium (5.57 g, 796.7 mmol) in liquid
ammonia (200 mL) at −78°C (cooling was maintained with
acetone/dry ice in a cold finger and cold bath) was added
N-Boc-phenylalaninol 4 (2.0 g, 7.96 mmol) in dry THF (15
mL). The acetone/dry ice bath was replaced by a CCl4/dry
ice bath and stirred for 2 h, after which time the reaction
mixture was cooled to −78°C. The blue solution was
stirred for 1 h and dry EtOH (10 mL) and solid NH4OAc
(5.0 g) was added and the reaction mixture was brought to
rt. After all the ammonia had evaporated the residue was
partitioned between EtOAc/H2O. The aqueous layer was
separated and extracted with EtOAc (2×20 mL) and the
combined organic layers were washed with brine (30 mL),
dried (Na2SO4) and concentrated in vacuo to afford N-
Boc-dihydro derivative 5 (2.54 g) as a colourless oil, which
was taken to the next step without any purification. (The
1
crude H NMR showed a 3:2 ratio of dihydroproduct 5 to
starting material 4, both compounds have the same Rf
value on TLC).
A dilute stream of ozone was passed into a solution of
crude N-Boc-dihydro derivative 5 (2.5 g) in EtOAc (25
mL) at −78°C for 1 h, the reaction mixture turned light
blue.