2340
C. Fotsch et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2337–2340
presence of polar guanidine group), but it could be used as
a lead to discover compounds that are more ‘drug-like’.
19. Peptide 1 is linked through the side-chains of Asp and Lys
to form a 23-membered lactam. Bednarek, M. A.; MacNeil,
T.; Kalyani, R. N.; Tang, R.; Van der Ploeg, L. H. T.; Wein-
berg, D. H. Biochem. Biophys. Res. Commun. 1999, 261, 209.
20. The sample was dissolved in 90% H2O/10% D2O, and the
pH was adjusted to 5.0 with dilute HCl or NaOH. The spectra
were acquired at 5 ꢀC, and the resonances were assigned using
TOCSEY and ROESY spectra. Intranuclear distances were
obtained from NOESY data, and structures were calculated
using XPLOR.
21. The bis-Cbz protected (4-aminobutyl)guanidine was pre-
pared using a method analogous to one reported in the litera-
ture. See: Preville, P.; He, J. X.; Tarazi, M.; Siddiqui, M. A.;
Cody, W. L.; Doherty, A. M. Bioorg. Med. Chem. Lett. 1997,
7, 1563.
References and Notes
1. Haskell-Luevano, C.; Hadley, M. E. Drug News Perspect.
1999, 12, 197.
2. The Melanocortin Receptors. Cone, R. D.; Ed.; Humana:
Totowa, N. J., 2000.
3. Huang, Q.-H.; Hruby, V. J.; Tatro, J. B. Am. J. Physiol.
1998, 275, R524.
4. Roubos, E. W. Comp. Biochem. Physiol., Part A: Mol.
Integr. Physiol. 1997, 118A, 533.
5. Grahame-Smith, D. G.; Butcher, R. W.; Ney, R. L.;
Sutherland, E. W. J. Biol. Chem. 1967, 242, 5535.
6. Ng, T. B. Comp. Biochem. Physiol., B: Comp. Biochem.
1990, 97B, 441.
7. Bertolini, A.; Gessa, G. L.; Vergoni, W.; Ferrari, W. Life
Sci. 1968, 7, 1203.
22. Carpino, L. A.; Ionescu, D.; El-Faham, A.; Henklein, P.;
Wenschuh, H.; Bienert, M.; Beyermann, M. Tetrahedron Lett.
1998, 39, 241. Wenschuh, H.; Beyermann, M.; Winter, R.;
Bienert, M.; Ionescu, D.; Carpino, L. A. Tetrahedron Lett.
1996, 37, 5483.
23. Carpino, L. A.; Sadat-Aalaee, D.; Beyermann, M. J. Org.
Chem. 1990, 55, 1673.
8. Bertolini, A.; Vergoni, W.; Gessa, G. L.; Ferrari, W. Nature
1969, 221, 667.
24. Ligand Binding Assay. Binding assays were performed in
96-well U-bottom plates. Membranes (200 mg tissue) were
incubated at 30 ꢀC for 2 h in assay buffer with various com-
pounds in the presence of 0.2 nM 125I-NDP-a-MSH(Amer-
shamPharmacia Biotech, Piscataway, NJ) in 100 mL total
volume. Non-specific binding was assessed in the presence of 1
mM cold NDP–MSH. The reaction was terminated by rapid
filtration through Unfilter-96 GF/C glass fiber filter plates
(FilterMate 196 Harvester, Packard Instrument Company,
Meriden, CT) followed by three washes with 300 mL of ice-
cold water. Bound radioactivity was determined using a Top-
Count microplate scintillation and luminescence counter
(Packard Instrument Company, Meriden, CT). Nonlinear
regression analyses of test compound concentration curves
were performed using GraphPad Prism (GraphPad Software,
Inc., San Diego, CA).
25. Functional (cAMP) Assay: Human embryonic kidney cells
(HEK 293) expressing the melanocortin 4 receptor were see-
ded into 96-well fibronectin coated plates to a density of
75,000 cells/well. Plates were used for assay ca. 48 h after
seeding. Assay was initiated by removing media from cells and
replacing with 90 mL of assay buffer (DMEM+100 mM
3-Isobutyl-1-Methylxanthine, IBMX), followed by addition of
10 mL of the test peptide ranging in concentration from 0.1
nM to 10 mM. Cells were then incubated for 30 min at 37 ꢀC.
Removal of assay media and addition of 100 mL Tropix Lysis
Buffer terminated the reaction. Production of cAMP was
measured using Tropix cAMP-Screen 96-well assay (Applied
Biosystems, Foster City, CA). The kit used was a chemilumi-
nescent ELISA system designed for quantitation of cAMP from
mammalian cell extracts. Chemiluminescent activity was mea-
sured using a Labsystems Luminoscan (Labsystems, Inc.,
Franklin, MA). Nonlinear regression analyses of test compound
concentration curves were performed using GraphPad Prism.
9. Fan, W.; Boston, B. A.; Kesterson, R. A.; Hruby, V. J.;
Cone, R. D. Nature 1997, 385, 165.
10. Huszar, D.; Lynch, C. A.; Fairchild-Huntress, V.; Dun-
more, J. H.; Fang, Q.; Berkemeier, L. R.; Gu, W.; Kesterson,
R. A.; Boston, B. A.; Cone, R. D.; Smith, F. J.; Campfield,
L. A.; Burn, P.; Lee, F. Cell 1997, 88, 131.
11. Chen, W.; Kelly, M. A.; Opitz-Araya, X.; Thomas, R. E.;
Low, M. J.; Cone, R. D. Cell 1997, 91, 789.
12. Wikberg, J. E. S. Eur. J. Pharmacol. 1999, 375, 295.
13. Adan, R. A.; Gispen, W. H. Eur. J. Pharmacol. 2000, 405, 13.
14. A group at Merck recently reported another example of
deriving a non-peptide lead from the structure of an MCR pep-
tide agonist. See: Sebhat, I. K.; Martin, W. J.; Ye, Z.; Barakat,
K.; Mosley, R. T.; Johnston, D. B. R.; Bakshi, R.; Palucki, B.;
Weinberg, D. H.; MacNeil, T.; Kalyani, R. N.; Tang, R.;
Stearns, R. A.; Miller, R. R.; Tamvakopoulos, C.; Strack, A. M.;
McGowan, E.; Cashen, D. E.; Drisko, J. E.; Hom, G. J.;
Howard, A. D.; MacIntyre, D. E.; van der Ploeg, L. H. T.;
Patchett, A. A.; Nargund, R. P. J. Med. Chem. 2002, 45, 4589.
15. Hruby, V. J.; Wilkes, B. C.; Hadley, M. E.; Al-Obeidi, F.;
Sawyer, T. K.; Staples, D. J.; de Vaux, A. E.; Dym, O.; Cas-
trucci, A. M.; Hintz, M. F.; Riehm, J. P.; Rao, R. J. Med.
Chem. 1987, 30, 2126.
16. Bednarek, M. A.; Silva, M. V.; Arison, B.; MacNeil, T.;
Kalyani, R. N.; Huang, R.-R. C.; Weinberg, D. H. Peptides
(New York) 1999, 20, 401.
17. For a comparison of Phe and dPhe analogues of peptide
ligands for the MCRs see: Haskell-Luevano, C.; Nikiforovich,
G.; Sharma, S. D.; Yang, Y.-K.; Dickinson, C.; Hruby, V. J.;
Gantz, I. J. Med. Chem. 1997, 40, 2740.
18. Haskell-Luevano, C.; Hendrata, S.; North, C.; Sawyer,
T. K.; Hadley, M. E.; Hruby, V. J.; Dickinson, C.; Gantz, I.
J. Med. Chem. 1997, 40, 2133.