1992
M. Hammond et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1989–1992
Table 4. Food intake effects of analogues in ratsa
structure. Neither of the new series contains the toxic
3-amino-9-ethylcarbazole core, yet each matches the
lead series in affinity for the Y5 receptor. Although
compounds were found to be potent Y5 antagonists,
their in vitro affinity did not translate into consistent in
vivo activity.
Compd
24 h Food-Deprived FI (% )
1j
ꢁ7/ꢁ59*/ꢁ16
ꢁ20/ꢁ20/ꢁ51*
ꢁ14/ꢁ23/ꢁ40*
ꢁ34*/ꢁ40*
16b
16e
17a
17b
17e
+18/+25
ꢁ20/+4/ꢁ7
References and Notes
*Considered active in this assay.
aAll compounds dosed orally at 40 mg/kg in male Sprague–Dawley
rats. Data presented as percent change (ꢁ=reduction; +=increase)
in food intake relative to control animals.
1. (a) Michel, M. C.; Beck-Sickinger, A.; Cox, H.; Doods,
H. N.; Herzog, H.; Larhammar, D.; Quirion, R.; Schwartz, T.;
Westfall, T. Pharm. Rev. 1998, 50, 143. (b) Gehlert, D. R.
Proc. Soc. Exp. Biol. Med. 1998, 218, 7.
2. Stanley, B. G.; Leibowitz, S. F. Life Sci. 1984, 35, 2635.
3. (a) Wyss, P.; Stricker-Krongrad, A.; Brunner, L.; Miller, J.;
Crossthwaite, A.; Whitebread, S.; Criscione, L. Regul. Pept.
1998, 75-76, 363. (b) Gerald, C.; Walker, M. W.; Criscione, L.;
Gustafson, E. L.; Batzl-Hartmann, C.; Smith, K. E.; Waysse,
P.; Durkin, M. M.; Laz, T. M.; Linemeyer, D. L.; Schaffhau-
ser, A. O.; Whitebread, S.; Hofbauer, K. G.; Taber, R. I.;
Branchek, T. A.; Weinshank, R. L. Nature (London) 1996,
382, 168. (c) Cabrele, C.; Langer, M.; Bader, R.; Wieland,
H. A.; Doods, H. N.; Zerbe, O.; Beck-Sickinger, A. G. J. Biol.
Chem. 2000, 275, 36043. (d) Parker, E. M.; Balasubramaniam,
A.; Guzzi, M.; Mullins, D. E.; Salisbury, B. G.; Sheriff, S.;
Witten, M. B.; Hwa, J. J. Peptides 2000, 21, 393. (e) McCrea,
K.; Wisialowski, T.; Cabrele, C.; Church, B.; Beck-Sickinger,
A.; Kraegen, E.; Herzog, H. Regul. Pept. 2000, 87, 47.
4. Hammond, M. IDrugs 2001, 4, 920.
5. (a) Block, M. H.; Boyer, S.; Brailsford, W.; Brittain, D. R.;
Carroll, D.; Chapman, S.; Clarke, D. S.; Donald, C. S.; Foote,
K. M.; Godfrey, L.; Ladner, A.; Marsham, P. R.; Masters,
D. J.; Mee, C. D.; O’Donovan, M. R.; Pease, J. E.; Pickup,
A. G.; Rayner, J. W.; Roberts, A.; Schofield, P.; Suleman, A.;
Turnbull, A. V. J. Med. Chem. 2002, 45, 3509. (b) Rudolf, K.;
Hurnaus, R.; Eberlein, W.; Engel, W.; Wielans, H.-A.; Krist,
B. WO 0296902, Chem. Abstr. 2003, 138, 14006.
6. Elliott, R. L.; Griffith, D. A.; Hammond, M. U. S. Patent 6
399 631, 2002 Chem. Abstr 2002, 137, 6086.
7. Huff, J.; Haseman, J. Environ. Health Perspect. 1991, 96, 23.
8. Harayama, T.; Akiyama, T.; Kawano, K. Chem. Pharm.
Bull. 1996, 44, 1634.
9. Elliott, R. L.; Oliver, R. M.; Hammond, M.; Patterson,
T. A.; She, L.; Hargrove, D. M.; Martin, K. A.; Maurer, T. S.;
Kalvass, J. C.; Morgan, B. P.; DaSilva-Jardine, P. A.; Ste-
venson, R. W.; Mack, C. M.; Cassella, J. V. J. Med. Chem.
2003, 46, 670.
10. (a) Youngman, M. A.; McNally, J. J.; Lovenberg, T. W.;
Reitz, A. B.; Willard, N. M.; Nepomuceno, D. H.; Wilson,
S. J.; Crooke, J. J.; Rosenthal, D.; Vaidya, A. H.; Dax, S. L.
J. Med. Chem. 2000, 43, 213. (b) Kordik, C. P.; Luo, C.;
Zanoni, B. C.; Lovenberg, T. W.; Wilson, S. J.; Vaidya, A. H.;
Crooke, J. J.; Rosenthal, D. I.; Reitz, A. B. Bioorg. Med.
Chem. Lett. 2001, 11, 2287.
of the imidazolylcarbazole 17a, which produced sig-
nificant reductions in food intake both times it was
tested, the other five antagonists, 1j, 16b, 16e, 17b
and 17e, did not have consistent anorectic effects (n
of at least 2). Compound 17b was also tested in an
overnight feeding model wherein the compound was
dosed 2 h before the start of the dark cycle and food
intake was measured 13 h later, and was found to
have no effect on food intake.
To determine whether the variable activity of these
compounds could be due to poor bioavailability, we
examined the pharmacokinetic properties of the carba-
zole 1j and the imidazolylcarbazole 17b in separate
studies. Carbazole 1j was found to have excellent expo-
sure, having a Cmax of 3133 ng/mL and a bioavailability
of >50% when dosed orally at 10 mg/kg. When dosed at
40 mg/kg, 17b was found to have a moderate plasma
exposure of 350 ng/mL and a bioavailability of 13%,
suggesting that poor exposure could account for the lack
of activity in some cases, but not all. Although CSF and/
or brain exposure data is not available for these com-
pounds, we know that in other chemically distinct Y5
antagonist series known to be well-exposed in both the
CNS and periphery we have observed a similar absence
of in vivo activity.9 By contrast, we have been able to
demonstrate that these compounds will block the orexi-
genic effect of a Y5 selective agonist.9
The ability of small molecule Y5 antagonists to block
food intake under ‘normal’ (non agonist-induced) con-
ditions has yet to be demonstrated unambiguously.
Although selective Y5 antagonists with potent anorectic
effects have been reported,10 recently there have been
studies disclosed in which potent, selective Y5 antago-
nists with good central exposure are capable of block-
ing agonist-induced feeding but have no effect on
normal food intake.11 Other Y5 antagonists with good in
vivo anorectic potency have more recently been found to
lack selectivity for the Y5 receptor.12 While it is clear that
NPY and its peptide agonists produce robust orexigenic
effects in rodents, blockade of the Y5 receptor does not
appear to unequivocally produce anorectic effects.
11. (a) Kanatani, A.; Ishihara, A.; Iwaasa, H.; Nakamura, K.;
Okamoto, O.; Hidaka, M.; Ito, J.; Fukuroda, T.; MacNeil,
D. J.; Van der Ploeg, L. H. T.; Ishii, Y.; Okabe, T.; Fukami,
T.; Ihara, M. Biochem. Biophys. Res. Commun. 2000, 272, 169.
(b) Turnbull, A. V.; Ellershaw, L.; Masters, D. J.; Birtles, S.;
Boyer, S.; Carroll, D.; Clarkson, P.; Loxham, S. J. G.;
McAulay, P. Diabetes 2002, 51, 2441.
12. Della Zuana, O.; Sadlo, M.; Germain, M.; Feletou, M.;
Chamorro, S.; Tisserand, F.; de Montrion, C.; Boivin, J. F.;
Duhault, J.; Boutin, J. A.; Levens, N. Int. J. Obes. 2001, 25, 84.
In summary, two series of potent Y5 antagonists
have been developed from an aminocarbazole lead