ReactiVity Studies of Substituted Hexadiene Radical Anions
rearrangements that include the Claisen,18 Caroll,19,20 and
Eschenmoser rearrangements21,22 and other Claisen-related
reactions.23-27 These rearrangements are useful in organic
synthesis because the parent reaction can be effected thermally
and is tolerant to a variety of functional groups.
The Cope rearrangement has been extensively studied over
the past decades,28-30 and labeling studies have established that
the rearrangement for 1,5-hexadiene proceeds through a chair
pathway requiring 33.3 ( 0.5 kcal/mol, whereas the reaction
involving a boat transition state requires an additional 11.4 (
2.0 kcal/mol.31,32 Although the details of the electronic structure
of the Cope transition state have been debated,31-48 labeling
studies,31,32 theoretical calculations,49 and thermochemical es-
timates50 support the assessment that the hydrocarbon undergoes
rearrangement through an aromatic transition state,51 although
FIGURE 1. Schematic potential energy surface for neutral and cationic
1,5-hexadiene Cope rearrangement. The ionization energy of the
hexadiene is obtained from photoelectron spectroscopy experiments,66
whereas the ionization energy of the transition state is estimated to be
similar to that of cyclohexyl radical.68 The exothermic rearrangement
of the cyclohexene-1,4-diyl radical cation is also indicated. Values are
in kcal/mol.
(17) Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765-
4766.
(18) Castro, A. M. M. Chem. ReV. 2004, 104, 2939-3002.
(19) Carroll, M. F. J. Chem. Soc. 1940, 704-706.
(20) Carroll, M. F. J. Chem. Soc. 1940, 1266-1268.
(21) Wick, A. E. v.; Felix, D.; Steen, K.; Eschenmoser, A. HelV. Chim.
Acta 1964, 47, 2425-2429.
the extent of biradical character can be altered by substitu-
tion.28,29,39,43,52-61
(22) Felix, D. v.; Gschwend-Steen, K.; Wick, A. E.; Eschenmoser, A.
HelV. Chim. Acta 1969, 52, 1030-1042.
(23) Baldwin, J. E.; Walker, J. A. J. Chem. Soc., Chem. Commun. 1973,
4, 117-118.
Bauld and co-workers have reported computational studies
showing that a radical cation variant exists for the Cope
rearrangement of 1,5-hexadiene.62-64 The calculations predict
that the hexadiene radical cation cyclizes to a lower energy chair
intermediate, a situation characterized as an “inverted potential
energy surface”65 for the reaction, as shown in Figure 1.
As shown in Figure 1, the inverted potential energy surface
results because the difference in ionization energies of the
neutral hexadiene66 and the transition state67,68 is greater than
the activation energy for rearrangement to the neutral product.
Experimental evidence for the intermediacy of cyclohexane-
1,4-diyl radical cation in the Cope rearrangement of 1,5-
(24) Kwart, H.; Hackett, C. M. J. Am. Chem. Soc. 1962, 84, 1754-
1755.
(25) Kazmaier, U. Amino Acids 1996, 33, 283-299.
(26) Ponaras, A. A. Tetrahedron Lett. 1980, 21, 4803-4806.
(27) Boeckman, R. K., Jr.; Flann, C. J.; Poss, K. M. J. Am. Chem. Soc.
1985, 107, 4359-4362.
(28) Wehrli, R.; Bellus, D.; Hansen, H.-J.; Schmid, H. Chimica 1976,
30, 416-423.
(29) Dewar, M. J. S.; Wade, L. E., Jr. J. Am. Chem. Soc. 1977, 99, 4417-
4424.
(30) Gajewski, J. J. Hydrocarbon Thermal Isomerizations; Academic:
New York, 1981.
(31) Doering, W. v. E.; Toscano, V. G.; Beasley, G. H. Tetrahedron
1971, 27, 5299-5306.
(32) Goldstein, M. J.; Benzon, M. S. J. Am. Chem. Soc. 1972, 42, 7147-
7149.
(51) Williams, F. J. Chem. Soc., Faraday Trans. 1994, 90, 1681-1687.
(52) Jiao, H.; Schleyer, P. v. R. Angew. Chem., Int. Ed. Engl. 1995, 34,
334-337.
(33) Doering, W. v. E.; Roth, W. R. J. Am. Chem. Soc. 1962, 18, 67-
74.
(34) Fukui, K.; Fusimoto, H. Tetrahedron Lett. 1966, 251-255.
(35) Hill, R. K.; Gilman, N. W. Chem. Commun. 1967, 13, 619-620.
(36) Simonetta, M.; Favini, G.; Mariani, G.; Gramaccioni, P. J. Am.
Chem. Soc. 1968, 90, 1280-1289.
(53) Wehrli, R.; Schmid, H.; Bellus, D.; Hansen, H.-J. HelV. Chim. Acta
1977, 60, 1325-1356.
(54) Gajewski, J. J.; Conrad, N. D. J. Am. Chem. Soc. 1978, 100, 6269-
6270.
(37) Sunko, D. E.; Humski, K.; Malojcic, R.; Borcic, S. J. Am. Chem.
Soc. 1970, 92, 6534-6538.
(55) Hrovat, D. A.; Borden, W. T.; Vance, R. L.; Rondan, N. G.; Houk,
K. N.; Morokuma, K. J. Am. Chem. Soc. 1990, 112, 2018-2019.
(56) Roth, W. R.; Lennarts, H.-W.; Doering, W. v. E.; Birladeanu, L.;
Guyton, C. A.; Kitagawa, C. J. J. Am. Chem. Soc. 1990, 112, 1722-1732.
(57) Hrovat, D. A.; Beno, B. R.; Lange, H.; Yoo, H.-Y.; Houk, K. N.;
Borden, W. T. J. Am. Chem. Soc. 1999, 121, 10529-10537.
(58) Doering, W. v. E.; Wang, Y. J. Am. Chem. Soc. 1999, 121, 10112-
10118.
(38) Brown, A.; Dewar, M. J. S.; Schoeller, W. J. J. Am. Chem. Soc.
1970, 92, 5516-5517.
(39) Dewar, M. J. S.; Wade, L. E., Jr. J. Am. Chem. Soc. 1973, 95, 290-
291.
(40) Komornicki, A.; McIver, J. W. J. Am. Chem. Soc. 1976, 98, 4553-
4561.
(41) Dewar, M. J. S.; Ford, G. P.; McKee, M. L.; Rzepa, H. R.; Wade,
L. E. J. Am. Chem. Soc. 1977, 99, 5069-5073.
(42) Rossi, M.; King, K. D.; Golden, D. M. J. Am. Chem. Soc. 1979,
101, 1223-1230.
(59) Doering, W. v. E.; Wang, Y. J. Am. Chem. Soc. 1999, 121, 10967-
10975.
(60) Hrovat, D. A.; Chen, J.; Houk, K. N.; Borden, W. T. J. Am. Chem.
Soc. 2000, 122, 7456-7460.
(43) Gajewski, J. J.; Conrad, N. D. J. Am. Chem. Soc. 1979, 101, 6693-
6704.
(61) Staroverov, V. N.; Davidson, E. R. J. Am. Chem. Soc. 2000, 122,
7377-7385.
(44) Doering, W. v. E. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 5279-
5283.
(45) Osamura, Y.; Kato, S.; Morokuma, K.; Feller, D.; Davidson, E. R.;
Borden, W. T. J. Am. Chem. Soc. 1984, 106, 3362-3363.
(46) Dewar, M. J. S.; Healy, E. F. Chem. Phys. Lett. 1987, 141, 521-
524.
(62) Blavins, J. J.; Cooper, D. L.; Karadakov, P. B. J. Phys. Chem. A
2004, 108, 194-202.
(63) Bauld, N. L.; Bellville, D. J.; Pabon, R.; Chelsky, R.; Green, G. J.
J. Am. Chem. Soc. 1983, 105, 2378-2382.
(64) Bauld, N. L.; Bellville, D. J.; B., H.; Lorenz, K. T.; Pabon, R. A.,
Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H.-S.; Marsh, B. K. Acc. Chem.
Res. 1987, 20, 371-378.
(47) Dewar, M. J. S.; Jie, C. J. J. Am. Chem. Soc. 1987, 109, 5893-
5900.
(65) Bauld, N. L. AdVances in Electron Transfer Chemistry; Mariano,
P. S., Ed.; JAI: Greenwich, 1992; Vol. 2, pp 1-66.
(66) Martin, H.-D.; Heller, C.; Mayer, B.; Beckhaus, H.-D. Chem. Ber.
1980, 113, 2589-2600.
(48) Morokuma, K.; Borden, W. T.; Hrovat, D. A. J. Am. Chem. Soc.
1988, 110, 4474-4475.
(49) Wiest, O.; Black, K. A.; Houk, K. N. J. Am. Chem. Soc. 1994, 116,
10336-10337.
(67) None. Estimate of ts ionization energy.
(68) Pottie, R. F.; Harrison, A. G.; Lossing, F. P. J. Am. Chem. Soc.
1961, 83, 3204-3206.
(50) Borden, W. T.; Loncharich, R. J.; Houk, K. N. Ann. ReV. Phys.
Chem. 1988, 39, 213-236.
J. Org. Chem, Vol. 72, No. 2, 2007 495