Oxidation of CO on Group 11 Metal Atoms
J. Phys. Chem. A, Vol. 110, No. 8, 2006 2661
References and Notes
matrixes. The reactivity toward CO and O2 is found to be
considerably different for Cu, Ag, and Au. Based on the above-
mentioned findings, it could be inferred that the reactivity of
copper toward CO is prior to O2, the reactivity of silver toward
O2 is prior to CO, and the reactivity of gold toward CO is
comparable to O2. In the reaction of Cu, Ag, and Au atoms
with CO/O2 mixture, Cu prefers pathway I and Ag prefers
pathway II, while pathways I and II are parallel for Au. On the
other hand, the effect of UV irradiation on M(O2) complexes
has been shown previously to induce insertion and formation
of metal oxide OMO.19 In the present experiments, copper
carbonyls, silver oxides, and gold carbonyls and oxides remain
after photolysis. Upon UV irradiation, it is possible that the
inserted OMO directly reacts with CO to produce CO2, and this
reaction may also contribute to some extent to the CO2
production.
The metal (n - 1)dπ, ns, np, and CO 2π* energy levels may
be helpful to understand this difference in the reactivity of group
11 metal atoms toward CO and O2. Taking the Cu-CO pair as
an example, the Cu 3dπ and CO π* levels are close (ca. 73.37
kcal/mol), but the Cu 4s and CO lone-pair levels are far apart
(ca. 96.85 kcal/mol),11d and thus the dπ f π* back-donation is
primarily responsible for the thermal stability of CuCO,
consistent with previous reports.18c As previously reported,18c
the absence of AgCO complex is attributed to the larger gap
between Ag 4d and CO π* levels relative to Cu. For the Au-
CO pair, the metal dπ and CO π* levels are further apart than
those in the Cu-CO case, but the metal s and the CO lone-pair
levels are closer. It has been found that the contribution of the
formation of AuCO is mainly from a larger σ-type dative
interaction. That is, the formation of AuCO is easier than that
of AgCO, but more difficult than that of CuCO. Consequently,
the reaction pathways of gold toward CO and O2 are comparable
when Au faces simultaneously the CO and O2 molecules; silver
forms silver oxides prior to the silver carbonyls, whereas copper
prefers the formation of copper carbonyls to that of copper
oxides.
(1) Haruta, M. Catal. Today 1997, 36, 153.
(2) See, for example: Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima,
S. J. Catal. 1989, 115, 301. Haruta, M.; Tsubota, S.; Kobayashi, T.;
Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175. Haruta,
M. Stud. Surf. Sci. Catal. 2001, 145, 31. Sanchez-Castillo, M. A.; Couto,
C.; Kim, W. B.; Dumesic, J. A. Angew. Chem., Int. Ed. Engl. 1983, 43,
1140. Bond, G. C.; Thompson, D. T. Catal. ReV.sSci. Eng. 1999, 41, 319.
Molina, L. M.; Hammer, B. J. Catal. 2005, 233, 399.
(3) Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Hakkinen, H.;
Barnett, R. N.; Landman, U. J. Phys. Chem. A 1999, 103, 9573.
(4) Stolcic, D.; Fischer, M.; Gantefo¨r, G.; Kim, Y. D.; Sun, Q.; Jena,
P. J. Am. Chem. Soc. 2003, 125, 2848. Kimble, M. L.; Castleman, A. W.,
Jr.; Mitric, R.; Burgel, C.; Bonacic- Koutecky, V. J. Am. Chem. Soc. 2004,
126, 2526.
(5) Wallace, W. T.; Whetten, R. L. J. Am. Chem. Soc. 2002, 124,
7499.
(6) Hagen, J.; Socaciu, L. D.; Elijazyfer, M.; Heiz, U.; Bernhardt, T.
M.; Woste, L. Phys. Chem. Chem. Phys. 2002, 4, 1707. Socaciu, L. D.;
Hagen, J.; Bernhardt, T. M.; Woste, L.; Heiz, U.; Hakkinen, H.; Landman,
U. J. Am. Chem. Soc. 2003, 125, 10437.
(7) Zhai, H. J.; Kiran, B.; Dai, B.; Li, J.; Wang, L. S. J. Am. Chem.
Soc. 2005, 127, 12098.
(8) van Herwijnen, T.; de Jong, W. A. J. Catal. 1980, 63, 83. Campbell,
C. T.; Daube, K. A. J. Catal. 1980, 104, 109. Nakumura, J.; Campbell, J.
M.; Campbell, C. T. J. Chem. Soc., Faraday Trans. 1990, 86, 2725. Wang,
G. C.; Jiang, L.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z.; Huang, W.; Xie, K.
C.; Li, Y. W.; Sun, Y. H.; Zhong, B. J. Phys. Chem. B 2003, 107, 557.
(9) Chinchen, G. C.; Spencer, M. S.; Waugh, K. C.; Whan, D. A. J.
Chem. Soc., Faraday Trans.1 1987, 83, 2193. Jiang, L.; Wang, G. C.; Cai,
Z. S.; Pan, Y. M.; Zhao, X. Z. J. Mol. Struct. (Theochem) 2004, 710,
97.
(10) See, for example: Xu, C.; Manceron, L.; Perchard, J. P. J. Chem.
Soc., Faraday Trans. 1993, 89, 1291. Bondybey, V. E.; Smith, A. M.;
Agreiter, J. Chem. ReV. 1996, 96, 2113. Fedrigo, S.; Haslett, T. L.;
Moskovits, M. J. Am. Chem. Soc. 1996, 118, 5083. Khriachtchev, L.;
Pettersson, M.; Runeberg, N.; Lundell, J.; Rasanen, M. Nature 2000, 406,
874. Himmel, H. J.; Manceron, L.; Downs, A. J.; Pullumbi, P. J. Am. Chem.
Soc. 2002, 124, 4448. Li, J.; Bursten, B. E.; Liang, B.; Andrews, L. Science
2002, 295, 2242. Andrews, L.; Wang, X. Science 2003, 299, 2049.
(11) (a) Zhou, M. F.; Tsumori, N.; Li, Z.; Fan, K.; Andrews, L.; Xu, Q.
J. Am. Chem. Soc. 2002, 124, 12936. (b) Zhou, M. F.; Xu, Q.; Wang, Z.;
von Rague´ Schleyer, P. J. Am. Chem. Soc. 2002, 124, 14854. (c) Jiang, L.;
Xu, Q. J. Am. Chem. Soc. 2005, 127, 42. (d) Jiang, L.; Xu, Q. J. Am. Chem.
Soc. 2005, 127, 8906. (e) Xu, Q.; Jiang, L.; Tsumori, N. Angew. Chem.,
Int. Ed. 2005, 44, 4338.
(12) Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
Zhou, M. F.; Tsumori, N.; Andrews, L.; Xu, Q. J. Phys. Chem. A 2003,
107, 2458. Jiang, L.; Xu, Q. J. Chem. Phys. 2005, 122, 034505.
(13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.
Conclusions
Reactions of laser-ablated Cu, Ag, and Au atoms with CO
and O2 mixture in solid argon have been studied using matrix-
isolation infrared spectroscopy. Besides the metal carbonyls and
oxides, the carbonyl metal oxides, (O2)Cu(CO)n (n ) 1, 2), (η1-
OO)MCO (M ) Ag, Au), OCAuO2CO, and OAuCO, are
formed on sample deposition or annealing and are characterized
using infrared spectroscopy on the basis of the results of the
isotopic substitution and the CO concentration change. UV
irradiation on these carbonyl metal oxides produced CO2,
indicating the oxidation of carbon monoxide to carbon dioxide.
The present experiments show that the reactivity of copper
toward CO is prior to O2, the reactivity of silver toward O2 is
prior to CO, and the reactivity of gold toward CO is comparable
to O2. Density functional theory (DFT) calculations have been
performed on these molecules. The identifications of these
carbonyl metal oxides are confirmed by the good agreement
between the experimental and calculated vibrational frequencies,
relative absorption intensities, and isotopic shifts.
(14) Becke, A. D. Phys. ReV. A 1988, 38, 3098. Perdew, J. P. Phys.
ReV. B 1986, 33, 8822. Lee, C.; Yang, E.; Parr, R. G. Phys. ReV. B 1988,
37, 785. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(15) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980,
72, 650. Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80,
3265.
(16) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(17) Huber, H.; Kundig, E. P.; Moskovits, M.; Ozin, G. A. J. Am. Chem.
Soc. 1975, 97, 2097. Kasai, P. H.; Jones, P. M. J. Am. Chem. Soc. 1985,
107, 813. Chenier, J. H. B.; Hampson, C. A.; Howard, J. A.; Mile, B. J.
Phys. Chem. 1989, 93, 114. Blitz, M. A.; Mitchell, S. A.; Hackett, P. A. J.
Phys. Chem. 1991, 95, 8719. Zhou, M. F.; Andrews, L. J. Chem. Phys.
1999, 111, 4548.
Acknowledgment. We thank the reviewer for valuable
suggestions. This work was supported by a Grant-in-Aid for
Scientific Research (B) (Grant 17350012) from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT)
of Japan and by Marubun Research Promotion Foundation. L.J.
thanks the MEXT of Japan and Kobe University for an Honors
Scholarship.
(18) (a) McIntosh, D.; Ozin, G. A. J. Am. Chem. Soc. 1976, 98, 3167.
(b) Kasai, P. H.; Jones, P. M. J. Phys. Chem. 1985, 89, 1147. (c) Kasai, P.