Page 3 of 4
ChemComm
DOI: 10.1039/C4CC07743A
Soc., 2010, 132, 17652; (d) A. W, H. Jiang, J. Org. Chem., 2010,
75, 2321.
into the alkylpalladium intermediate B to generate intermediate
C. The intermediate C might go through two pathways: a) βꢀtertꢀ
butyl elimination of intermediate C provides the product 4a
together with concomitant removal of isobutene17 and the
formation of Pd(0); b) with the assistance of the base and H2O
presented in the reaction, intermediate D was formed.
In view of the prevalence of primary amide motifs in the
natural world, we tested the possibility of forming such amides
from our initial products. According to the method reported in the
4. (a) J. P. Wolfe, Eur. J. Org. Chem., 2007, 571; (b) A. Minatti, K.
Muñiz, Chem. Soc. Rev., 2007, 36, 1142, (c) P. S. Hanley, J. F.
Hartwig, Angew. Chem. Int. Ed., 2013, 52, 8510; (d) G. Liu, X.
Lu, Org. Lett., 2001, 3, 3879; (e) G. Liu, S. S. Stahl, J. Am. Chem.
Soc., 2007, 129, 6328 (f) Z. Pan, S. M. Pound, N. R. Rondla, C. J.
Douglas, Angew. Chem. Int. Ed., 2014, 53, 5170; (g) Y. Miyazaki,
N. Ohta, K. Semba, Y. Nakao, J. Am. Chem. Soc., 2014, 136, 3732;
(h) H. Zhang, W. Pu, T. Xiong, Y. Li, X. Zhou, K. Sun, Q. Liu, Q.
Zhang, Angew. Chem. Int. Ed., 2013, 52, 2529; (i) K. Muñiz, C.
Martínez, J. Org. Chem., 2013, 78, 2168; (j) F. Cardona, A. Goti,
Nat. Chem., 2009, 1, 269.
60
65
5
10 literature,12e for example, when Nꢀ(tertꢀbutyl)ꢀ2ꢀ(1ꢀtosylindolinꢀ
2ꢀyl)acetamide (3aa) was heated to reflux in trifluoroacetic acid
for 24 h, the desired 2ꢀ(indolinꢀ2ꢀyl)acetamide (6) was obtained
in more than 85% yield (Scheme 4). Surprisingly, during our
deprotection work, we found an approach to obtain product 7
15 when 3a was added KOH in EtOH reflux for 4 h.18
70 5. (a) E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc., 2005,
127, 7690; (b) G. Liu, S. S. Stahl, J. Am. Chem. Soc., 2006, 128,
7179.
6. (a) T. W. Liwosz, S. R. Chemler, J. Am. Chem. Soc., 2012, 134, 2020;
(b) F. C. Sequeira, B. W. Turnpenny, S. R. Chemler, Angew.
75
Chem. Int. Ed., 2010, 49, 6365; (c) T. P. Zabawa, S. R. Chemler,
Org. Lett., 2007, 9, 2035; (d) Y. Luo, K. Ji, Y. Li, L. Zhang, J. Am.
Chem. Soc., 2012, 134, 17412; (e) J.ꢀS. Lin, Y.ꢀP. Xiong, C.ꢀL.
Ma, L.ꢀJ. Zhao, B. Tan, X.ꢀY. Liu, Chem. Eur. J., 2014, 20, 1332.
7. (a) W. E. Brenzovich, D. Benitez, A. D. Lackner, H. P. Shunatona, E.
Tkatchouk, W. A. Goddard, III, F. D. Toste, Angew.Chem. Int. Ed.,
2010, 49, 5519; (b) X.ꢀY. Liu, C.ꢀH. Li, C.ꢀM. Che, Org. Lett.,
2006, 8, 2707; (c) S. Zhu, L. Ye, W. Wu, H. Jiang, Tetrahedron.
2013, 69, 10375.
80
Scheme 4. Transformation of Nꢀtertꢀbutyl amides 3a.
In summary, we have demonstrated an efficient and rapid
method to the preparation of three important classes of nitrogen
20 heterocycles, 2ꢀsubstituted indolines, tetrahydroisoquinolins and
pyrrolidines from the intermolecular aminoamidation and
aminocyanation of alkenes with isocyanide insertion. This
protocol proved to be effective for a broad substrate scope in
good to excellent yields with operational convenience.
8. H. Qin, N. Yamagiwa, S. Matsunaga, M. Shibasaki, Angew. Chem.
Int. Ed., 2007, 46, 409.
85
9. A. V. Lygin, A. de Meijere, Angew. Chem., Int. Ed., 2010, 49, 9094.
10. (a) A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru, V. G.
Nenajdenko, Chem. Rev., 2010, 110, 5235; (b) A. Dömling, Chem.
Rev., 2006, 106, 17; (c) V. Nair, C. Rajesh, A. U. Vinod, S. Bindu,
A. R. Sreekanth, J. S. Mathen, L. Balagopal, Acc. Chem. Res.,
2003, 36, 899.
90
25
We are grateful to the National Natural Science Foundation of
China (21172076), the National Basic Research Program of
China (973 Program) (2011CB808600), the Guangdong Natural
Science Foundation (10351064101000000), and the Fundamental
Research Funds for the Central Universities (2014ZP0004 and
11. (a) H. Jiang, B. Liu, Y. Li, A. Wang, H. Huang, Org. Lett., 2011,
13, 1028; (b) Y. Li, J. Zhao, H. Chen, B. Liu, H. Jiang, Chem.
Commun., 2012, 48, 3545; (c) B. Liu, Y. Li, H. Jiang, M. Yin, H.
Huang, Adv. Synth. Catal., 2012, 354, 2288; (d) B. Liu, Y. Li, M.
Yin, W. Wu, H. Jiang, Chem. Commun., 2012, 48, 11446; (e) B.
Liu, M. Yin, H. Gao, W. Wu, H. Jiang, J. Org. Chem., 2013, 78,
3009; (f) B. Liu, H. Gao, Y. Yu, W. Wu, H. Jiang, J. Org. Chem.,
2013, 78, 10319; (g) H. Jiang, H. Gao, B. Liu, W. Wu, RSC Adv.,
2014, 4,17222; (h) H. Jiang, M. Yin, Y. Li, B. Liu, J. Zhao, W.
Wu, Chem. Commun., 2014, 50, 2037.
12. (a) P. Wang, S. J. Danishefsky, J. Am. Chem. Soc., 2010, 132,
17045; (b) Y. Rao, X. Li, S. J. Danishefsky, J. Am. Chem. Soc.,
2009, 131, 12924; (c) C. G. Saluste, R. J. Whitby, M. Furber,
Angew. Chem., Int. Ed., 2000, 39, 4156; (d) S. Xu, X. Huang, X.
Hong, B. Xu, Org. Lett., 2012, 14, 4614; (e) F. Zhou, K. Ding, Q.
Cai, Chem. Eur. J., 2011, 17, 12268.
13. (a) P.ꢀL. Wu, Y.ꢀL. Hsu, C.ꢀW. Jao, J. Nat. Prod., 2006, 69, 1467;
(b) J. B. Bremner, W. Sengpracha, Tetrahedron. 2005, 61, 941; (c)
G. Cardillo, C. Tomasini, Chem. Soc. Rev., 1996, 25, 117; (d) B.
Weiner, W. Szymanski, D. B. Janssen, A. J. Minnaard, B. L.
Feringa, Chem. Soc. Rev., 2010, 39, 1656.
14. (a) R. C. Larock, T. R. Hightower, L. A. Hasvold, K. P. Peterson, J.
Org. Chem., 1996, 61, 3584; (b) S. R. Fix, J. L. Brice, S. S. Stahl,
Angew. Chem. Int. Ed., 2002, 41, 164. (c) Y. Yin, G. Zhao,
Heterocycles. 2006, 68, 23.
95
30 2014ZZ0046).
100
105
110
115
120
125
Notes and references
School of Chemistry and Chemical Engineering, South China University
of Technology, Guangzhou 510640, China. Fax: +86 20ꢀ87112906; Tel:
+86 20ꢀ87112906; Eꢀmail: jianghf@scut.edu.cn
35 † Electronic Supplementary Information (ESI) available: Experimental
section, characterization of all compounds, copies of 1H and 13C NMR
spectra for selected compounds. See DOI: 10.1039/b000000x/
1. (a) R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev., 2011, 111, 2981;
40
45
50
55
(b) R. Zhu, S. L. Buchwald, J. Am. Chem. Soc., 2012, 134, 12462;
(c) K. H. Jensen, J. D. Webb, M. S. Sigman, J. Am. Chem. Soc.,
2010, 132, 17471; (d) L. Liao, R. Jana, K. B. Urkalan, M. S.
Sigman, J. Am. Chem. Soc., 2011, 133, 5784. (e) M. F.
Semmelhack, C. Bodurow, J. Am. Chem. Soc., 1984, 106, 1496;
(f) Y. Xia, A. J. Boydston, R. H. Grubbs, Angew. Chem. Int. Ed.,
2011, 50, 5882; (g) D. C. Koester, M. Kobayashi, D. B. Werz, Y.
Nakao, J. Am. Chem. Soc., 2012, 134, 6544; (h) D. M. Schultz, J.
P. Wolfe, Synthesis., 2012, 44, 351; (i) H. Harayama, A. Abe, T.
Sakado, M. Kimura, K. Fugami, S. Tanaka, Y. Tamaru, J. Org.
Chem., 1997, 62, 2113; (j) C. F. Rosewall, P. A. Sibbald, D. V.
Liskin, F. E. Michael, J. Am. Chem. Soc., 2009, 131, 9488.
15. For details, see supporting information.
16. (a) M. R. Manzoni, T. P. Zabawa, D. Kasi, S. R. Chemler,
Organometallics. 2004, 23, 5618; (b) E. J. Alexanian, C. Lee, E. J.
Sorensen, J. Am. Chem. Soc., 2005, 127, 7690; (c) L. S. Hegedus,
G. F. Allen, D. J. Olsen, J. Am. Chem. Soc., 1980, 102, 3583; (d)
E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc., 2005,
127, 7690; (e) P. A. Sibbald, C. F. Rosewall, R. D. Swartz, F. E.
Michael, J. Am. Chem. Soc., 2009, 131, 15945; (f) E. L. Ingalls, P.
A. Sibbald, W. Kaminsky, F. E. Michael, J. Am. Chem. Soc., 2013,
135, 8854; (g) K.ꢀT. Yip, N.ꢀY. Zhu, D. Yang, Org. Lett., 2009,
11, 1911; (h) K. Muñiz, C. H. Hövelmann, J. Streuff, J. Am. Chem.
2. M. Hojo, C. Murakami, K. Ohno, J. Kuboyama, S.ꢀy. Nakamura, H.
Ito, A. Hosomi, Heterocycles. 1998, 47, 97.
3. (a) A. Wang, H. Jiang, H. Chen, J. Am. Chem. Soc., 2009, 131, 3846;
(b) X. Ji, H. Huang, W. Wu, H. Jiang, J. Am. Chem. Soc., 2013,
135, 5286; (c) L. Huang, H. Jiang, C. Qi, X. Liu, J. Am. Chem.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3