Angewandte
Chemie
1995, 36, 893 – 896; d) M. De Rosa, A. Gamba-
corta, A. Gliozzi, Microbiol. Rev. 1986, 70 – 80.
[3] “Archaeal Lipids”: M. De Rosa, A. Gambacorta
in Chemical Methods in Bacterial Systematics
(Eds.: M. Goodfellow, A. G. O'Donell), Wiley,
Chicester, 1994, pp. 197 – 264.
[4] a) T. Eguchi, K. Arakawa, T. Terachi, K. Kaki-
numa, J. Org. Chem. 1997, 62, 1924 – 1933; b) T.
Eguchi, T. Terachi, K. Kakinuma, J. Chem. Soc.
Chem. Commun. 1994, 7 – 8.
[5] a) C. H. Heathcock, B. L. Finkelstein, E. T. Jarvi,
P. A. Radel, C. R. Hadley, J. Org. Chem. 1988, 53,
1922 – 1942.
[6] T. Eguchi, K. Ibaragi, K. Kakinuma, J. Org.
Chem. 1998, 63, 2689 – 2698.
[7] a) M. De Rosa, S. De Rosa, A. Gambacorta, L.
Minale, J. D. Bu'Lock, Phytochemistry 1977, 16,
1661 – 1965; b) M. De Rosa, S. De Rosa, Phyto-
chemistry 1977, 16, 1909 – 1912.
[8] a) L. L. Yang, A. Haug, Biochim. Biophys. Acta
1979, 573, 308 – 320; b) H. Hanselaer, P.
De Clercq, Org. Magn. Reson. 1980, 13, 376 –
379; c) M. Christl, H. J. Reich, J. D. Roberts, J.
Am. Chem. Soc. 1971, 93, 3463 – 3468.
[9] a) G. Knühl, P. Sennhenn, G. Helmchen, J. Chem.
Soc. Chem. Commun. 1995, 1845 – 1846; b) S.
Kudis, G. Helmchen, Angew. Chem. 1998, 110,
3210 – 3212; Angew. Chem. Int. Ed. 1998, 37,
3047 – 3050; c) S. Kudis, G. Helmchen, Tetrahe-
dron 1998, 54, 10449 – 10456.
[10] a) V. K. Aggarwal, N. Monteiro, G. J. Tarver, R.
McCague, J. Org. Chem. 1997, 62, 4665 – 4671.
[11] a) D. Curran, M.-H. Chen, D. Leszczweski, R. L.
Elliott, D. M. Rakiewicz, J. Org. Chem. 1986, 51,
1612– 1614; b) H. L. Goering, S. S. Kantner, J.
Org. Chem. 1984, 49, 422 – 426.
Figure 1. Differences in 13C NMR chemical shifts of samples of diol 1 obtained by
degradation of Archaea membrane lipids and of synthetic compound 2a–d
(125 MHz, CDCl3). The x axis gives the number of the carbon atom and y axis the
Dd (d(2)ꢀd(1)). In addition the optical rotations of 2a–d are given.
OSiPh2tBu
a)
OH
7
+
H
OBn
Br
H
10
9
b)
8
20'
15'
19'
5
9
7
3
1
16
H
17'
10
18'
11
19
15
20
13
OH
H
H
18
OH
17
10'
16'
H
1'
7'
9'
8'
[12] a) M. Tamura, J. Kochi, Synthesis 1971, 303 – 305;
b) G. Fouquet, M. Schlosser, Angew. Chem. 1974,
86, 50 – 51; Angew. Chem. Int. Ed. Engl. 1974, 13,
82– 83.
[13] A. G. Schultz, T. J. Guzi, E. Larsson, R. Rahm,
K. Thakkar, J. Bidlack, J. Org. Chem. 1998, 63,
7795 – 7805.
1
Scheme 3. Synthesis of diol 1. a) 1. 9, Mg, THF, 658C; 2. 5 mol% Li2CuCl4, THF,
ꢀ708C; 3. 7, ꢀ708C!RT, ꢁ12 h; 4. Bu4NF, THF, 85% (2 steps); b) 1. CBr4, Ph3P,
Et2O, RT, ꢁ12 h; 2. Mg (0.5 equiv), THF, 658C, 5 mol% Li2CuCl4, THF, 658C;
3. PtO2, EtOAc, 2 h; 4. Pd(OH)2/C, H2, 4 bar, 38% (4 steps). Ts=p-toluenesulfonyl,
DME=dimethoxyethane.
[14] The mixture of lipids was obtained from Bernina
Biosystems, Munich. Degradation was carried
out according to a method developed in the
Arigoni goup (O. W. Gräther, PhD thesis, ETH Zürich, 1994):
reaction with HI followed by treatment of the resultant iodides
with silver acetate to give acetates which were saponified.
synthesis of the four model compounds 2a–d and the diol 1
and comparison of their NMR spectroscopic and optical
rotation data with those of diol 1 derived from natural archaea
[15] B. Gabler, PhD thesis, Universität Heidelberg, 1997.
lipids.
Received: November 25, 2002 [Z50629]
Keywords: archaea membrane lipids · asymmetric synthesis ·
.
configuration determination · cross-coupling · natural products
[1] a) C. R. Woese, O. Kandler, M. L. Wheelis, Proc. Natl. Acad. Sci.
USA 1990, 87, 4576 – 4759; b) G. Darland, T. D. Brock, W.
Samsonoff, S. F. Conti, Science 1970, 170, 1416 – 1418; c) K. O.
Stetter, Naturwissenschaften 1985, 72, 291 – 301; d) T. D. Brock,
Science 1985, 230, 132– 138.
[2] a) S. Thurl, PhD thesis, Technische Universität, Munich, 1986;
b) Y. BlØriot, E. Untersteller, B. Fritz, P. Sinay¨, Chem. Eur. J.
2002, 8, 240 – 246; c) A. J. Fairbanks, P. Sinay¨, Tetrahedron Lett.
Angew. Chem. Int. Ed. 2003, 42, 2419 – 2421
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2421