ORGANIC
LETTERS
2004
Vol. 6, No. 6
1065-1068
BINOL−Salen-Catalyzed Highly
Enantioselective Alkyne Additions to
Aromatic Aldehydes
Zi-Bo Li and Lin Pu*
Department of Chemistry, UniVersity of Virginia, CharlottesVille, Virginia 22904-4319
lp6n@Virginia.edu
Received February 1, 2004
ABSTRACT
The BINOL−Salen compound (−)-1 can catalyze the addition of both aryl- and alkylalkynes to aromatic aldehydes at room temperature with
high enantioselectivity (86−97% ee). The conditions for this catalytic process are both mild and simple. Unlike most other BINOL-based
i
catalysts, using ligand (−)-1 not only avoids heating or cooling but also does not require the addition of Ti(OPr)4.
The catalytic asymmetric alkyne addition to carbonyl com-
pounds has attracted intense research activity in recent years
because this process can provide a very convenient route to
chiral propargylic alcohols that have diverse synthetic
applications.1-3 Among the catalytic methods developed for
the asymmetric alkyne addition to aldehydes,4-10 two are
currently considered the most practical. One was developed
by Carreira and co-workers, which used N-methylephedrin,
Zn(OTf)2, and Et3N.5 In this method, the zinc alkynylides
were generated in situ in the presence of substoichiometric
amounts of Zn(II) salts. The other method was developed
by us,6,7a-c which used 1,1′-bi-2-naphthol (BINOL), Et2Zn,
and Ti(OiPr)4. The alkynylzincs in this method were gener-
ated by treating terminal alkynes with Et2Zn. The chiral
(1) (a) Marshall, J. A.; Wang, X. J. J. Org. Chem. 1992, 57, 1242-
1252. (b) Henderson, M. A.; Heathcock, C. H. J. Org. Chem. 1988, 53,
4736-4745. (c) Fox, M. E.; Li, C.; Marino, J. P., Jr.; Overman, L. E. J.
Am. Chem. Soc. 1999, 121, 5467-5480.
(2) (a) Nicolaou, K. C.; Webber, S. E. J. Am. Chem. Soc. 1984, 106,
5734-5736. (b) Chemin, D.; Linstrumelle, G. Tetrahedron 1992, 48, 1943-
1952. (c) Corey, E. J.; Niimura, K.; Konishi, Y.; Hashimoto, S.; Hamada,
Y. Tetrahedron Lett. 1986, 27, 2199-2202. (d) Vourloumis, D.; Kim, K.
D.; Petersen, J. L.; Magriotis, P. A. J. Org. Chem. 1996, 61, 4848-4852.
(3) (a) Evans, D. A.; Halstead, D. P.; Allison, B. D. Tetrahedron Lett.
1999, 40, 4461. (b) Trost, B.; Krische, M. J. J. Am. Chem. Soc. 1999, 121,
6131-6141. (c) Roush, W. R.; Sciotti, R. J. J. Am. Chem. Soc. 1994, 116,
6457-6458. (d) Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1991, 113,
6129-6139.
ligands in both methods are commercially available and
inexpensive. They can conduct the highly enantioselective
(7) Other reports on BINOL-catalyzed alkyne additions involving both
R2Zn and Ti(OiPr)4: (a) Lu, G.; Li, X.; Chan, W. L.; Chan, A. S. C. J.
Chem. Soc., Chem. Commun. 2002, 172-173. (b) Li, X.-S.; Lu, G.; Kwok,
W. H.; Chan, A. S. C. J. Am. Chem. Soc. 2002, 124, 12636-12637. (c)
Lu, G.; Li, X.-S.; Chen, G.; Chan, W. L.; Chan, A. S. C. Tetrahedron:
Asymmetry 2003, 14, 449-452. (d) Liu, Q.-Z.; Xie, N.-S.; Luo, Z.-B.; Cui,
X.; Cun, L.-F.; Gong, L. Z.; Mi, A.-Q.; Jiang, Y. Z. J. Org. Chem. 2003,
68, 7921-7924. (e) Moore, D.; Huang, W.-S.; Xu, M.-H.; Pu, L.
Tetrahedron Lett. 2002, 43, 8831-8834. (f) Mashall, J. A.; Bourbeau, M.
P. Org. Lett. 2003, 5, 3197-3199.
(4) For reviews, see: (a) Pu, L. Tetrahedron 2003, 59, 9873-9886. (b)
Pu, L.; Yu, H. B. Chem. ReV. 2001, 101, 757-824.
(5) (a) Frantz, D. E.; Fa¨ssler, R.; Tomooka, C. S.; Carreira, E. M. Acc.
Chem. Res. 2000, 33, 373-381. (b) Anand, N. K.; Carreira, E. M. J. Am.
Chem. Soc. 2001, 123, 9687-9688.
(6) (a) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett. 2002, 4, 4143-
4146. (b) Moore, D.; Pu, L. Org. Lett. 2002, 4, 1855-1857.
10.1021/ol0498139 CCC: $27.50 © 2004 American Chemical Society
Published on Web 02/26/2004