10.1002/anie.202009757
Angewandte Chemie International Edition
RESEARCH ARTICLE
663–673; (d) Y Li, J. Yang, H. Yang, Q. Guan, L. Lu, H. Yu, L. Jiang,
ACS Catal. 2020, 10, 7753–7762.
Conclusion
[4] Y. Kuwahara, H. Kango, H. Yamashita, ACS Catal. 2019, 9, 1993−2006.
[5] (a) G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A.
E. Baber, H. L.Tierney, M. F. Stephanopoulos, E. C. H. Sykes, Science
2012, 335, 1209–1212; (b) F. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng,
Z. Jia, P. Ren, D. Xiao, X. Wen, N. Wang, H. Liu, D. Ma, J. Am. Chem.
Soc. 2018, 140, 13142−13146; (c) S. Zhou, L. Shang, Y. Zhao, R. Shi, G.
I. N. Waterhouse, Y. C. Huang, L. Zheng, T. Zhang, Adv. Mater. 2019,
31, 1900509;.
In conclusion, using H2O (D2O) as the H (D) source, Pd-P NNs
were demonstrated as an efficient cathode for electrocatalytic
semihydrogenation of various functionalized alkynes to
hydrogenated and deuterated alkenes with high yield and
selectivity. DFT calculations revealed that the incorporation of P
led to the enhanced specific adsorption of alkynes, which was
consistent with the results of XPS. In addition, the incorporated
P could also promote the generation of H*ads from water
electrolysis, and decrease the amount of the hydrogen atoms at
the surface and subsurface of Pd for suppressing undesirable
over-hydrogenation. In these regards, Pd-P NNs enabled the
semihydrogenation of alkynes at lower potential with higher
activity and selectivity than pure Pd NNs. Furthermore, the CV
tests and the trapping of H*ads experiments revealed that this
electrochemical semihydrogenation of alkynes occurred via a
H*ads addition to the C≡C bond pathway rather than a proton-
coupled electron transfer process. Interestingly, the mono-, di-,
and tri-deuterated alkenes with specific deuterated sites and >
99% deuterium ratios were readily synthesized. Gram-scale
preparation of tri-deuterated alkenes with high yield and
deuterated ratio in a two-electrode cell highlighted the potential
utility. This work not only offers a new platform by using in-situ
generated hydrogen from electrocatalytic water electrolysis for
selective semi- hydrogenation/deuteration reactions, but also
opens new paradigm for the development of rationally designed
electrocatalysts for efficient organic electrosynthesis.
[6] (a) D.Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A.
Knop-Gericke, S. D. Jackson, R. Schlögl, Science 2008, 320, 86–89; (b)
D. Albani, M. Shahrokhi, Z. Chen, S. Mitchell, R. Hauert, N. López, J.
Pérez-Ramírez, Nat. Commun. 2018, 9, 2634; (c) Y. Liu, A. J. McCue, C.
Miao, J. Feng, D. Li, J. A. Anderson, J. Catal. 2018, 364, 406–414.
[7] (a) F. Mäsing, H. Nüsse, J. Klingauf, A. Studer, Org. Lett. 2017, 19,
2658−2661; (b) B. Li, H. Ge, Sci. Adv. 2019, 5, eaaw2774; (c) P.
Hauwert, R. Boerleider, S. Warsink, J. J. Weigand, C. J. Elsevier, J. Am.
Chem. Soc. 2010, 132, 16900–16910; (d) R. Iwasaki, E.Tanaka, T.
Ichihashi, Y. Idemoto, K. Endo, J. Org. Chem. 2018, 83, 13574−13579.
[8] (a) Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485−4540; (b) M.
Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230−13319;
(c) P. Xiong, H. C. Xu, Acc. Chem. Res. 2019, 52, 3339−3350; (d) C.
Liu, S. Han, M. Li, X. Chong, B. Zhang, Angew. Chem. Int. Ed.,
2020, DOI: 10.1002/anie.202009155; (e) X. Liu, R. Liu, J. Qiu, X. Cheng,
G. Li, Angew. Chem. Int. Ed. 2020, DOI: 10.1002/anie.202005765; (f) Y.
Yuan, A. Lei, Acc. Chem. Res. 2019, 52, 3309−3324.
[9]
(a) Y. Qiu, A. Scheremetjew, L. Ackermann, J. Am. Chem. Soc. 2019,
141, 2731−2738.; (b) C. W. Anson, S. S. Stahl, Joule 2019, 3,
2889−2891; (c) N. Fu, G. S. Sauer, A. Saha, A. Loo, S. Lin, Science
2017, 357, 575−579; (d) Y. Zhao, C. Liu, C.Wang, X. Chong, B. Zhang,
CCS Chem. 2020, 2, 507–515; (e) P. Zhang, X. Sheng, X. Chen, Z. Fang,
J. Jiang, M. Wang, F. Li, L. Fan, Y. Ren, B. Zhang, B. J. J. Timmer, M. S.
G. Ahlquist, L. Sun, Angew. Chem. Int. Ed. 2019, 131, 9155−9159;
Angew. Chem. 2019, 131, 9253–9257 (f) X. Chong, C. Liu, Y. Huang, C.
Huang, B. Zhang, Natl. Sci. Rev. 2020, 7, 285–295; (g) Y. Jiang, R. Long,
Y. Xiong, Chem. Sci. 2019, 10, 7310−7326.
Acknowledgements
The authors are grateful to the National Natural Science
Foundation of China (Nos. 21871206 and 21373149).
[10] (a) J. S. Filhol, M. Neurock, Angew. Chem. Int. Ed. 2006, 45, 402−406;
(b) C. G. Morales-Guio, L. A. Hu, X. Stern, Chem. Soc. Rev. 2014, 43,
6555−6569; (c) J. M. Cornelis, V. D. Ham, M. T. Koper, D. G. H.
Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183−5191; (d) Z. W. Seh, J.
Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo,
Science 2017, 355, eaad4998.
Keywords: electrocatalysis • semihydrogenation • deuteration •
alkynes • Pd-P nanostructures
[11] A. Fukazawa, J. Minoshima, K. Tanaka, Y. Hashimoto, Y. Kobori, Y.
Sato, M. Atobe. ACS Sustainable Chem. Eng. 2019, 7, 11050−11055.
[12] J. Zhang, Y. Xu, B. Zhang, Chem. Commun. 2014, 50, 13451−13453.
[13] X. Huang, Y. Li, Y. Chen, E. Zhou, Y. Xu, H. Zhou, X. Duan, Y. Huang,
Angew. Chem. Int. Ed. 2013, 52, 2520−2524; Angew. Chem. 2013, 125,
2580–2584
[1] (a) C. Oger, L. Balas, T. Durand, J. M. Galano, Chem. Rev. 2013, 113,
1313−1350; (b) G. Vilé, D. Albani, N. Almora-Barrios, N. López, J. Pérez-
Ramírez. ChemCatChem 2016, 8, 21–33; (c) J. A. Delgado, O.
Benkirane, C. Claver, D. Curulla-Ferréc, C. Godard, Dalton Trans. 2017,
46, 12381–12403; (d) R. Gaspari, A. E. Prota, K. Bargsten, A. Cavalli, M.
O. Steinmetz, Chem 2017, 2, 102–113; (e) S. Fu, N. Chen, X. Liu, Z.
Shao, S. P. Luo, Q. Liu, J. Am. Chem. Soc. 2016, 138, 8588–8594; (g)
L.Song, Q. Feng, Y. Wang, S. Ding, Y. D. Wu, X. Zhang, L. W. Chung, J.
Sun, J. Am. Chem. Soc. 2019, 141, 17441−17451; (f) A. Fedorov, H. J.
Liu, H. K. Lo, C. Coperet, J. Am. Chem. Soc. 2016, 138, 16502−16507.
Angew. Chem. Int. Ed. 2018, 57, 14857-14861; Angew. Chem. 2018,
130, 15073–15077; (b) E. D. Slack, C. M. Gabriel, B. H. Lipshutz, Angew.
Chem. Int. Ed. 2014, 53, 14051–14054; Angew. Chem. 2014, 126,
14275–14278 (c) R. S. Sherboꢀ, R. S.Delima, V. A. Chiykowski, B. P.
MacLeod, Berlinguette, C. P. Nat. Chem. 2018, 1, 501–507; (d) A. J.
McCue, J. A. Anderson, Front. Chem. Sci. Eng. 2015, 9, 142–153; (e) M.
Li, N. Zhang, R. Long, W. Ye, C. Wang, Y. Xiong, Small 2017, 13,
1604173.
[14] L. Cheng, Z. Zhang, W. Niu, G. Xu, L. Zhu, J. Power Sources. 2008, 182,
91−94.
[15] (a) F. Luo, Q. Zhang, X. Yu, S. Xiao, Y. Ling, H. Hu, L. Guo, Z. Yang, L.
Huang, W. Cai, H. Cheng, Angew. Chem. Int. Ed. 2018, 57, 14862–
14867; Angew. Chem. 2018, 130, 15078–15083; (b) X. D. Wang, Y. F.
Xu, H. S. Rao, W. J. Xu, H. Y. Chen, W. X. Zhang, D. B. Kuang, C. Y. Su,
Energy Environ. Sci. 2016, 9, 1468–1475.
[16] (a) S. P. Cummings, T. N. Le, G. E. Fernandez, L. G. Quiambao, B. J.
Stokes, J. Am. Chem. Soc. 2016, 138, 6107−6110; (b) C. Q. Zhao, Y. G.;
Qiu, H. Chen, L. Wei, P. Fang, Org. Lett. 2019, 21, 1412−1416.
[17] (a) A. N. Correia, L. H. Mascara, S. A. S. Machado, Avaca, L. A. 1997,
42, 493−495; (b) R. S. Sherbo, A. Kurimoto, C. M. Brown, C. P.
Berlinguette, J. Am. Chem. Soc. 2019, 141, 7815−7821; (c) G. Jiang, M.
Lan, Z. Zhang, X. Lv, Z. Lou, X. Xu, F. Dong, S. Zhang, Environ. Sci.
Technol. 2017, 51, 7599−7605; (d) L. Jacobse, J. Rost M. M. T. M.
Koper, ACS Cent. Sci. 2019, 5, 1920−1928.
[3] (a) M. Hu, S. Zhao, S. Liu, C. Chen, W. Chen, W. Zhu, C. Liang, W. C.
Cheong, Y. Wang, Y. Yu, Q. Peng, K. Zhou, J. Li, Y.Li, Adv. Mater. 2018,
30, 1801878; (b) M. Kuriyama, N. Hamaguchi, G. Yano, K. Tsukuda, K.
Sato, O. Onomura, J. Org. Chem. 2016, 81, 8934−8946; (c) M. García-
Mota, J. Gómez-Díaz, G. Novell-Leruth, C. Vargas-Fuentes, L. Bellarosa,
B. Bridier, J. Pérez-Ramírez, N. López, Theor. Chem. Acc. 2011, 128,
[18] H. Liu, J.; Yuan, J. Han, C. Liu, D. Wang, T. Liu, M. Liu, J. Luo, A. Wang,
J. C. Crittenden, Environ. Sci. Technol. 2019, 53, 11932–11940.
6
This article is protected by copyright. All rights reserved.