Journal of the American Chemical Society
Page 8 of 9
1
2
3
4
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
3
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
5
56
57
58
59
60
Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307; (c)
D.; Bergman, R.-G.; Ellman, J.-A.; J. Am. Chem. Soc. 2011,
133, 11430; (f) Liu, Y.; Li, D.; Park, C.-M. Angew. Chem., Int.
Ed. 2011, 50, 7333.
Varela, J. A.; Saá, C. Synlett 2008, 2571. For book, see: (d)
Tanka, K. Transition-metal-mediated aromatic ring construc-
tion, Wiley, 2013. For Selected examples for cobalt-catalyzed
[2+2+2] cycloaddition to form pyridines, see: (e) Naiman, A.;
Vollhardt, K. P. C. Angew. Chem., Int. Ed. 1977, 16, 708; (f)
Vollhardt, K. P. C. Angew. Chem., Int. Ed. 1984, 23, 539; (g)
Varela, J. A.; Castedo, L.; Saá, J. Am. Chem. Soc. 1998, 120,
12147; (h) Varela, J. A.; Castedo, L.; Saá, C. J. Org. Chem.
1997, 62, 4189; (i) Varela, J. A.; Castedo, L.; Saá, C. Org. Lett.
1999, 1, 2141; (j) Moretto, A. F.; Zhang, H.-C.; Maryanoff, B.
E. J. Am. Chem. Soc. 2001, 123, 3157; (k) Goswami, A.;
Ohtaki, K.; Kase, K.; Ito, T.; Okamoto, S. Adv. Synth. Catal.
2008, 350, 143; (l) Young, D. D.; Deiters, A. Angew. Chem.,
Int. Ed. 2007, 46, 5187; (m) For Selected examples for Ruthe-
nium-catalyzed [2+2+2] cycloaddition to form pyridines, see: (n)
Yamamoto, Y.; Ogawa, R.; Itoh, K.; J. Am. Chem. Soc. 2001,
123, 6189; (o) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Tak-
agishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. J. Am. Chem.
Soc. 2005, 127, 9605; (p) Varela, J. A.; Castedo, L.; Saá, C. J.
Org. Chem. 2003, 68, 8595; For a transition metal free protocol,
see: (q) Kral, K.; Hapke, M. Angew. Chem., Int. Ed. 2011, 50,
2434.
For leading examples, see: (a) McCormick, M. M.; Duong, H.
A.; Zuo, G.; Louie, J. J. Am. Chem. Soc. 2005, 127, 5030; (b)
Movassaghi, M. M.; Hill, D. J. Am. Chem. Soc. 2006, 128,
4592; (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2008, 130, 3645; (d) Liu, S.; Liebeskind, L. S. J.
Am. Chem. Soc. 2008, 130, 6918; (e) Manning, J. R.; Davies, H.
M. L. J. Am. Chem. Soc. 2008, 130, 8602; (f) Wang, Y.-F.;
Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570; (g) Wang, Y.-F.;
Toh, K. K.; Ng, E. P. J.; Chiba, S. J. Am. Chem. Soc. 2011, 133,
6411; (h) Wang, C.; Li, X.; Wu, F.; Wan, B. Angew. Chem., Int.
Ed. 2011, 50, 7162; (i) Ohashi, M.; Takeda, I.; Ikawa, M.;
Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 18018; (j) Chen, M.
Z.; Micalizio, G. C. J. Am. Chem. Soc. 2012, 134, 1352; (k)
Wang, D.; Wang, F.; Song, G.; Li, X. Angew. Chem., Int. Ed.
2012, 51, 12348; (l) Neely, J. M.; Rovis, T. J. Am. Chem. Soc.
2013, 135, 66; (m) Stark, D. G.; Morrill, L. C.; Yeh, P.-P.;
Slawin, A. M. Z.; O’Riordan, T. J. C.; Smith, A. D. Angew.
Chem., Int. Ed. 2013, 52, 11642; (n) Loy, N. S. Y.; Singh, A.;
Xu, X.; Park, C.-M. Angew. Chem., Int. Ed. 2013, 52, 2212; (o)
Wei, Y.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135, 3756; (p)
Lei, C.-H.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. J. Am.
Chem. Soc. 2013, 135, 4708; (q) Michlik, S.; Kempe, R.
Angew. Chem., Int. Ed. 2013, 52, 6326; (r) Jiang, Y.; Park, C.-
M. Chem. Sci. 2014, 5, 2347; (s) Neely, J. M.; Rovis, T. J. Am.
Chem. Soc. 2014, 136, 2735; (t) Prechter, A.; Henrion, G.;
Faudot dit Bel, P.; Gagosz, F. Angew. Chem., Int. Ed. 2014, 53,
4959; (u) Toh, K. K.; Biswas, A.; Wang, Y.-F.; Tan, Y. Y.;
Chiba, S. J. Am. Chem. Soc. 2014, 136, 6011.
10) (a) Tong, S.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X.
Angew. Chem., Int. Ed. 2012, 51, 4417; (b) Yang, L.; Wang, D.-
X.; Huang, Z.-T.; Wang, M.-X. J. Am. Chem. Soc. 2009, 131,
10390; (c) Matsubara, R.; Kobayashi, S. Acc. Chem. Res. 2008,
41, 292, and references therein.
11) (a) Rakshit, S.; Patureau, F.-W.; Glorius, F. J. Am. Chem. Soc.
2010, 132, 9585; (b) Neumann, J. J.; Suri, M.; Glorius, F. An-
gew. Chem., Int. Ed. 2010, 49, 7790.
12) (a) Stuart, D.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem.
Soc. 2010, 132, 18326; (b) Huestis, M. P.; Chan, L.; Stuart, D.
R.; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50, 1338.
13) Wang, L.; Ackermann, L. Org. Lett. 2013, 15, 176.
14) Li, B.; Wang, N.; Liang, Y.; Xu, S.; Wang, B. Org. Lett. 2013,
15, 136.
15) (a) Liu, W. B.; Jiang, H. F.; Huang, L. B. Org. Lett. 2010, 12,
312; (b) Crawley, M. L.; Goljer, I.; Jenkins, D. J.; Mehlmann, J.
F.; Nogle, L.; Dooley, R.; Mahaney, P. E. Org. Lett. 2006, 8,
5837; (c) Yan, R.-L.; Luo, J.; Wang, C.-X.; Ma, C.-W.; Huang,
G.-S.; Liang, Y.-M. J. Org. Chem. 2010, 75, 5395; (d) Zhao,
M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem.─Eur. J.
2014, 20, 1839; (e) Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.;
Guan, Z.-H. Org. Lett. 2014, 16, 608.
7)
16) In 2012, Guan group reported an example of Cu(I) catalyzed
coupling of enamides with alkynes for the synthesis of pyri-
dines. In this report, alkynes limited to symmetric dialkylacety-
lene dicarboxylates. Meanwhile, reactions were conducted at
o
high temperature (140 C). For details, see: Zhao, M.-N.; Ren,
Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem. Commun. 2012, 48,
8105.
17) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc.
2007, 129, 10096.
18) (a) Linder, I.; Gerhard, M.; Schefzig, L.; Andra, M.; Bentz, C.;
Reissig, H.-U.; Zimmer, R. Eur. J. Org. Chem. 2011, 6070; (b)
Yamamoto, S.; Okamoto, K.; Murakoso, M.; Kuninobu, Y.;
Takai, K. Org. Lett. 2012, 14, 3182.
19) The catalytic species here is proposed to be C6H6-Ru(OAc)2, as
supported by the experiment that C6H6-RuCl2 can also catalyze
the target reaction with a yield of 76%. We found that cationic
Ru generated by [(p-cymene)RuCl2]2 and KPF6 can also give
the target product, but with inferior efficiency. DFT calcula-
tions using this cationic species as the real catalyst show similar
reaction mechanism and regiochemistry (for more discussion,
see the Supporting Information).
20) For references of mechanism discussions, see: (a) Li, J.; John,
M.; Ackermann, L. Chem.─Eur.
J 2014, 20, 5403; (b)
Nakanowatari, S.; Ackermann, L. Chem.─Eur. J. 2014, 20,
5409; (c) Hofmann, N.; Ackermann, L. J. Am. Chem. Soc.
2013, 135, 5877; (d) Ackermann, L. Acc. Chem. Res. 2014, 47,
281; (e) Warratz, S. Kornhaaβ, C.; Cajaraville, A.; Niepötter,
B.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54,
5513.
8)
For recent reviews of enamides, see: (a) Gopalaiah, K.; Kagan,
H. B. Chem. Rev. 2011, 111, 4599; (b) Xie, J.-H.; Zhu, S.-F.;
Zhou, Q.-L. Chem. Rev. 2011, 111, 1713; For convergent
synthesis of N-vinyl and N-aryl amides, see: (c) Muci, A. R.;
Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131; (d) Hartwig,
J. F. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E. Ed.; Wiley-Interscience: New York,
2002; p 1051; (e) Beletskaya, I. P.; Cheprakov, A. V. Coord.
Chem. Rev. 2004, 248, 2337; (f) Dehli, J. R.; Legros, J.; Bolm,
C. Chem. Commun. 2005, 973.
For selected transition-metal-catalyzed coupling reactions of
enamides, see: (a) Pankajakshan, S.; Xu, Y.-H.; Cheng, J. K.;
Low, M. T.; Loh, T.-P. Angew. Chem., Int. Ed. 2012, 51, 5701;
(b) Xu, Y.-H.; Chok, Y. K.; Loh, T.-P. Chem. Sci. 2011, 2,
1822; (c) Zhou, H.; Chung, W.-J.; Xu, Y.-H.; Loh, T.-P. Chem.
Commun. 2009, 3472; (d) Zhou, H.; Xu, Y.-H.; Chung, W.-J.;
Loh, T.-P. Angew. Chem., Int. Ed. 2009, 48, 5355; (e) Hesp, K.-
21) Gaussian09, RevisionA.02, Frisch, M. J. et al. Gaussion,
Inc.,Wallingford CT, 2009, see the Supporting Information for
detail.
22) The reported values are relative free energies (△Ggas in the gas
phase, △Gsol in toluene) and enthalpies (△Hgas in the gas phase).
23) The computed activation free energies here in solution are
higher than the expected value of the experiment, considering
o
9)
that the reaction was carried out at 100 C. One of the sources
for the overestimation of the reaction activation free energy is
the entropy overestimation in solution: we used the gas phase
computed entropies as the estimated entropies in solution, and
this approximation introduces entropy overestimation for the
present two-molecule to one-molecule process, which converts
two molecules (IN13 and HOAc) to one molecule (IN6).
ACS Paragon Plus Environment