C O M M U N I C A T I O N S
Scheme 2
work (CIF and PDF). This material is available free of charge via the
References
(1) For reviews in the photochemistry of group 6 metal-carbene complexes,
see: (a) Hegedus, L. S. Tetrahedron 1997, 53, 4105. (b) Hegedus, L. S.
In ComprehensiVe Organometallic Chemistry II; Abel, E. W., Stone, F.
G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol. 12, p 549. (c)
Schwindt, M. A.; Miller, J. R.; Hegedus, L. S. J. Organomet. Chem. 1991,
413, 143.
(2) Selected reviews: (a) Do¨tz, K. H. Angew. Chem., Int. Ed. Engl. 1984,
23, 587. (b) Wulff, W. D. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, p 1065. (c)
Wulff, W. D. In ComprehensiVe Organometallic Chemistry II; Abel, E.
W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol.
12, p 470. (d) Harvey, D. F.; Sigano, D. M. Chem. ReV. 1996, 96, 271.
(e) Aumann, R.; Nienaber, H. AdV. Organomet. Chem. 1997, 41, 163. (f)
Sierra, M. A. Chem. ReV. 2000, 100, 3591. (g) de Meijere, A.; Schirmer,
H.; Duetsch, M. Angew. Chem., Int. Ed. 2000, 39, 3964.
(3) Hegedus, L. S.; de Weck, G.; D’Andrea, S. J. Am. Chem. Soc. 1988, 110,
2122.
We have not been able so far to locate and characterize a con-
certed transition structure that connects 1d and 5d in either the So
or the T1 potential energy hypersurfaces. Instead, we have found a
stepwise mechanism whose first transition structure (TS1 in Scheme
2) is associated with the 1,2-migration of the chromium atom from
the carbene to the nitrogen, with an activation energy of 19.7 kcal/
mol. Efforts to locate TS1 in the So manifold meet with no success.
An intrinsic reaction coordinate (IRC)17 study from TS1 at the T1
state led to the uncoordinated triplet carbene 6, in which the spin
density of the carbene center is 1.887 au. This carbene can be trans-
formed into 5d at the T1 state by means of TS2 (a saddle point
associated with the migration of the hydrogen atom from the nitro-
gen atom to the carbene moiety). This step has an activation energy
of 35.9 kcal/mol. However, if the 1d f 5d transformation should
take place along the TS1-6-TS2 pathway, the stereochemistry of
the reaction should be contrary to that experimentally observed.
Triplet carbene 6 can isomerize to intermediate 7 through tran-
sition structure TS3 with an associated activation energy of 13.4
kcal/mol. In addition, 7 is 0.9 kcal/mol more stable than its stereo-
isomer 6 at the T1 state. Conversion of 7 into 5d takes place via TS4,
with an activation energy 3.2 kcal/mol lower than that computed
for conversion of 6 into 5d, thus indicating that the 7 f 5d reaction
pathway is kinetically favored. Therefore, this pathway is in full
agreement with the experimental data. The rigidity imposed by the
cyclic structure of complexes 1 is not responsible for this new photo-
chemical reaction because the irradiation of complex 8 produced
the unstable iminochromium complex 9 in 86% yield (Scheme 3).
(4) Gallager, M. L.; Greene, J. B.; Rooney, A. D. Organometallics 1997, 16,
5260.
(5) The first ketene to carbene isomerizations have been recently reported by
Gro¨tjahn in an Ir nucleus. See: (a) Gro¨tjahn, D. B.; Bikzhanova, G. A.;
Collins, L. S. B.; Concolino, T.; Lam, K. C.; Rheingold, A. L. J. Am.
Chem. Soc. 2000, 122, 5222. (b) Urtel, H.; Bikzhanova, G. A.; Gro¨tjahn,
D. B.; Hofmann, P. Organometallics 2001, 20, 3938. (c) Gro¨tjahn, D. B.;
Collins, L. S. B.; Wolpert, M.; Bikzhanova, G. A.; Lo, H. C.; Combs, D.;
Hubbard, J. L. J. Am. Chem. Soc. 2001, 123, 8260.
(6) Arrieta, A.; Coss´ıo, F. P.; Ferna´ndez, I.; Go´mez-Gallego, M.; Lecea, B.;
Manchen˜o, M. J.; Sierra, M. A. J. Am. Chem. Soc. 2000, 122, 11509.
(7) Sierra, M. A.; del Amo, J. C.; Manchen˜o, M. J.; Go´mez-Gallego, M.
Tetrahedron Lett. 2001, 42, 5345.
(8) The irradiation of group 6 metal-carbene complexes with UV-light
produced CO extrusion and syn-anti isomerization of the group tethered
to the ligand. See: Doyle, K. O.; Gallagher, M. L.; Pryce, M. T.; Rooney,
A. D. J. Organomet. Chem. 2001, 617, 269.
(9) See the Supporting Information for a full experimental procedure,
crystallographic determination of 5c, and all of the data concerning the
calculations reported in this work.
(10) (a) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1972, 11, 129. (b) Reetz,
M. T. Tetrahedron 1973, 29, 2189.
(11) All calculations were carried out using the Gaussian 98 suite of programs.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.
A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.;
Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M.
W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian
98, revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.
(12) All calculations were performed at the UB3LYP level of theory. See: (a)
Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr,
R. G. Phys. ReV. B 1988, 37, 785. (c) Vosko, S. H.; Wilk, L.; Nusair, M.
Can. J. Phys. 1980, 58, 1200.
Scheme 3
(13) The LANL2 DZ effective core potential and basis set were used for chro-
mium during the optimizations and harmonic analysis to compute zero-
point vibrational energies (not corrected). To obtain more accurate
energies, the basis set for the explicit electrons of chromium was aug-
mented with a set of f-polarization functions. See: (a) Hay, P. J.; Wadt,
W. R. J. Chem. Phys. 1985, 82, 299. (b) Ehlers, A. W.; Bo¨hme, M.;
Dapprich, S.; Gobbi, A.; Ho¨llwarth, A.; Jonas, V.; Ko¨hler, K. F.; Stegman,
R.; Veldkam, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111. The
remaining elements were described with the standard 6-31+G* basis set.
See: Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio
Molecular Orbital Theory; Wiley: New York, 1986; p 76 and references
therein.
In conclusion, an unprecedented photochemical pathway alterna-
tive to the now classical Hegedus’s photocarbonylation has been
disclosed. Both theoretical and experimental results are in full agree-
ment with this new dyotropic rearrangement18 of the carbene ligand
to an imine ligand in complexes 1. Efforts directed to fully under-
stand the general mechanism of the photochemistry of group 6
metal-carbene complexes are now deeply active in our laboratories.
(14) These computations were performed at the configuration interaction singles
(CIS) level of theory starting from the HF wave function. See: Foresman,
J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992,
96, 135.
(15) (a) Zimmermann, H. E.; Sebek, P.; Zhu, Z. J. Am. Chem. Soc. 1998, 120,
8549. (b) Dauben, W. G.; Hecht, S. J. Org. Chem. 1998, 63, 6102. (c)
Go´mez, I.; Olivella, S.; Reguero, M.; Riera, A.; Sole´, A. J. Am. Chem.
Soc. 2002, 124, 15375.
(16) It has been reported experimentally that in photochemical reactions of
organometallic carbenes such as bis(tricyclohexylphosphine) benzylidene
ruthenium dichloride (Grubbs’s catalyst) the reactive excited state is a
triplet. See: Kunkely, H.; Vogler, A. Inorg. Chim. Acta 2001, 325, 179.
(17) Gonza´lez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523
(18) Another very interesting experimental and theoretical study of a stepwise
dyotropic rearrangement has been reported while this paper was under
revision. See: Zhang, X.; Houk, K. N.; Lin, S.; Danishefsky, S. J. J. Am.
Chem. Soc. 2003, 125, 5111.
Acknowledgment. Support for this work from grant BQU2001-
1283 (Madrid-group), grant BQU2001-0904 (San Sebastia´n-Donos-
tia group) from the Ministerio de Ciencia y Tecnolog´ıa (Spain),
and the Euskal Herriko Unibertsitatea (9/UPV 00040.215-13548/
2001) (San Sebastia´n-Donostia group) is gratefully acknowledged.
I.F. thanks the Ministerio de Educacio´n y Cultura (Spain) for a
predoctoral (FPU) grant.
Supporting Information Available: Full experimental details for
the preparation of all new compounds, X-ray characterization of
compound 5c, and full computational data for the calculations in this
JA035614T
9
J. AM. CHEM. SOC. VOL. 125, NO. 32, 2003 9573