A R T I C L E S
Clark et al.
Figure 2. Ruthenium olefin metathesis catalysts 1 and 2.
Figure 3. Mechanically interlocked structures synthesized by olefin
metathesis. A rodlike structure, with bulky terminal “stopper” units, encircled
by a ring (A) is termed a [2]rotaxane, while two interlocked rings (B) are
designated a [2]catenane.
tides26 and olefin monomers.27-30 Macrocyclization reactions
of R,ω-heterotelechelic polymers often employ high-fidelity,
high-conversion “click” reactions,31-36 such as the Huisgen 1,3-
dipolar cycloaddition between an alkyne and an azide, but
necessitate high-dilution or pseudo-high-dilution conditions to
favor cycles rather than oligomers. In contrast, reactions such
as ring-expansion metathesis polymerization27-30 (REMP),
catalyzed by cyclic ruthenium alkylidene species, overcome this
limitation and enable rapid synthesis of multigram quantities
of pure cyclic polymer. In addition to the cyclic ruthenium
catalysts used in REMP, a number of other functional-group-
tolerant ruthenium alkylidene catalysts, for example, catalysts
1 and 2 (Figure 2), have seen broad application in polymer
synthesis.37-40
supramolecular chemistry45-47 (often involving hydrogen-
bonding interactions between crown ether-type species and
secondary ammonium ions) to template the formation of
preorganized structures and dynamic covalent chemistry48-54
to induce interlocking of the resulting complex, high-yielding
syntheses of rotaxanes55-58 and catenanes59-65 (Figure 3), as
well as a variety of other, more complex architectures,66-72 have
been realized. One particularly effective strategy to synthesize
mechanically interlocked molecules employs the dynamic,
ruthenium-catalyzed ring-closing metathesis (RCM) reaction,
whereby a diolefin polyether fragment is subjected to RCM
conditions and “clipped” around a disubstituted ammonium
ion.56,63,69
Another intriguing and challenging area of research is the
synthesis of mechanically interlocked molecules.41-44 Such
structures contain two or more molecules that cannot be
separated without covalent bond cleavage but that do not contain
any covalent bonds between them. Utilizing a combination of
Due to the complexity of mechanically linked structures,
confirmation of the interlocked nature of the products can often
prove difficult via standard characterization techniques. How-
ever, the use of two-dimensional diffusion-ordered NMR
(18) Oike, H.; Imaizumi, H.; Mouri, T.; Yoshioka, Y.; Uchibori, A.;
Tezuka, Y. J. Am. Chem. Soc. 2000, 122, 9592.
(19) Tezuka, Y.; Fujiyama, K. J. Am. Chem. Soc. 2005, 127, 6266.
(20) Oike, H.; Kobayashi, S.; Mouri, T.; Tezuka, Y. Macromolecules 2001,
34, 2742.
(45) Schalley, C. A.; Weilandt, T.; Bru¨ggemann, J.; Vo¨gtle, F. Top. Curr.
Chem. 2004, 248, 141.
(46) Cantrill, S. J.; Fulton, D. A.; Heiss, A. M.; Pease, A. R.; Stoddart,
J. F.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 2000, 6, 2274.
(47) Ashton, P. R.; Bartsch, R. A.; Cantrill, S. J.; Hanes, R. E., Jr.;
Hickingbottom, S. K.; Lowe, J. N.; Preece, J. A.; Stoddart, J. F.;
Talanov, V. S.; Wang, Z.-H. Tetrahedron Lett. 1999, 40, 3661.
(48) Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. ReV. 2007,
36, 1705.
(21) Oike, H.; Mouri, T.; Tezuka, Y. Macromolecules 2001, 34, 6592.
(22) Adachi, K.; Takasugi, H.; Tezuka, Y. Macromolecules 2006, 39,
5585.
(23) Tezuka, Y. J. Polym. Sci., Part A: Polym. Chem. 2003, 5, 17.
(24) Tezuka, Y.; Oike, H. Macromol. Rapid Commun. 2001, 22, 1017.
(25) Tezuka, Y. Chem. Rec. 2005, 5, 17.
(26) Culkin, D. A.; Jeong, W.; Csihony, S.; Gomez, E. D.; Balsara, N. P.;
Hedrick, J. L.; Waymouth, R. M. Angew. Chem., Int. Ed. 2007, 46,
2627.
(49) Haussmann, P. C.; Stoddart, J. F. Chem. Rec. 2009, 9, 136.
(50) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.;
Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898.
(51) Wu, J.; Leung, K. C.-F.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 17266.
(27) Boydston, A. J.; Xia, Y.; Kornfield, J. A.; Gorodetskaya, I. A.;
Grubbs, R. H. J. Am. Chem. Soc. 2008, 130, 12775.
(28) Xia, Y.; Boydston, A. J.; Yao, Y.; Kornfield, J. A.; Gorodetskaya,
I. A.; Spiess, H. W.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131,
2670.
(52) Haussmann, P. C.; Khan, S. I.; Stoddart, J. F. J. Org. Chem. 2007,
72, 6708.
(53) Arico´, F.; Chang, T.; Cantrill, S. J.; Khan, S. I.; Stoddart, J. F. Chem.
Eur. J. 2005, 11, 4655.
(29) Bielawski, C. W.; Benitez, D.; Grubbs, R. H. J. Am. Chem. Soc.
2003, 125, 8424.
(54) Glink, P. T.; Oliva, A. I.; Stoddart, J. F.; White, A. J. P.; Williams,
D. J. Angew. Chem., Int. Ed. 2001, 40, 1870.
(30) Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Science 2002, 297,
2041.
(55) Wisner, J. A.; Beer, P. D.; Drew, M. G. B.; Sambrook, M. R. J. Am.
Chem. Soc. 2002, 124, 12469.
(31) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004.
(56) Kilbinger, A. F. M.; Cantrill, S. J.; Waltman, A. W.; Day, M. W.;
Grubbs, R. H. Angew. Chem., Int. Ed. 2003, 42, 3281.
(57) Hannam, J. S.; Kidd, T. J.; Leigh, D. A.; Wilson, A. J. Org. Lett.
2003, 5, 1907.
(32) Golas, P. L.; Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K.
Macromolecules 2006, 39, 6451.
(33) Lutz, J.-F. Angew. Chem., Int. Ed. 2008, 47, 2182.
(34) Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Macromolecules
2005, 38, 3558.
(58) Coumans, R. G. E.; Elemans, J. A. A. W.; Thordarson, P.; Nolte,
R. J. M.; Rowan, A. E. Angew. Chem., Int. Ed. 2003, 42, 650.
(59) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999,
121, 1599.
(35) Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. ReV. 2007,
36, 1369.
(36) Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46, 1018.
(37) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
(38) Love, J. A.; Sanford, M. S.; Day, M. W.; Grubbs, R. H. J. Am. Chem.
Soc. 2003, 125, 10103.
(60) Weck, M.; Mohr, B.; Sauvage, J.-P.; Grubbs, R. H. J. Org. Chem.
1999, 64, 5463.
(61) Mobian, P.; Kern, J.-M.; Sauvage, J.-P. J. Am. Chem. Soc. 2003,
125, 2016.
(39) Frenzel, U.; Nuyken, O. J. Polym. Sci., Part A: Polym. Sci. 2002,
40, 2895.
(62) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley,
A. R. J. Am. Chem. Soc. 2004, 126, 15364.
(40) Bielawski, C. W.; Grubbs, R. H. Prog. Polym. Sci. 2007, 32, 1.
(41) Huang, F.; Gibson, H. W. Prog. Polym. Sci. 2005, 30, 982.
(42) Wenz, G.; Han, B.-H.; Mu¨ller, A. Chem. ReV. 2006, 106, 782.
(43) Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Chem.
ReV. 2009, 109, 5974.
(63) Guidry, E. N.; Cantrill, S. J.; Stoddart, J. F.; Grubbs, R. H. Org.
Lett. 2005, 7, 2129.
(64) Iwamoto, H.; Itoh, K.; Nagamiya, H.; Fukazawa, Y. Tetrahedron
Lett. 2003, 44, 5773.
(65) Wang, L.; Vysotsky, M. O.; Bogdan, A.; Bolte, M.; Bo¨hmer, V.
Science 2004, 304, 1312.
(44) Stoddart, J. F. Chem. Soc. ReV. 2009, 38, 1802.
9
3406 J. AM. CHEM. SOC. VOL. 132, NO. 10, 2010