Construction of Isoquinolin-1(2H)-ones
Meckley, S. Antony, G. Kohlhagen, Y. Pommier, M. Cushman,
J. Med. Chem. 2004, 47, 5651–5661; h) T. Matsui, T. Sugiura,
H. Nakui, S. Iguch, S. Shigeoka, H. Tukedu, T. Odagaki, Y.
Ushio, K. Ohmoto, M. Iwamani, S. Yamazaki, T. Arai, M.
Kawamura, J. Med. Chem. 1992, 35, 3307–3319; i) S. W. Li,
M. G. Nair, D. M. Edwards, R. L. Kisluick, Y. Gaument, I. K.
Dev, D. S. Duch, J. Humphreys, G. K. Smith, R. Ferone, J.
Med. Chem. 1991, 34, 2746–2754.
For a review of the classic approaches, see: a) V. A. Glushkov,
Y. V. Shklyaev, Chem. Heterocycl. Compd. 2001, 37, 663–687.
For a recent transition-metal-free example, see: b) D. Y. Li,
K. J. Shi, X. F. Mao, G. R. Chen, P. N. Liu, J. Org. Chem. 2014,
79, 4602–4614.
To further increase the synthetic utility of this transfor-
mation, we tried the direct reaction of 2-(1-alkynyl)benz-
aldehyde 1aЈ with aniline in the presence of Cu(OAc)2·H2O
(30 mol-%). The reaction afforded corresponding isoquin-
olin-1(2H)-one 2a in 63% yield, see Equation (7).
[2]
[3]
For recent examples of transition-metal-catalyzed pathways –
with Pd, see: a) K. Cherry, A. Duchene, J. Thibonnet, L. Par-
rain, M. Abarbri, Synthesis 2005, 2349–2356; b) T. Hudlicky,
H. F. Olivo, J. Am. Chem. Soc. 1992, 114, 9694–9696; c) Z.
Zheng, H. Alper, Org. Lett. 2008, 10, 4903–4906; d) R. Grigg,
V. Sridharan, L. H. Xu, J. Chem. Soc., Chem. Commun. 1995,
1903–1904; e) J. S. Mahanty, M. De, N. G. Kundu, J. Chem.
Soc. Perkin Trans. 1 1997, 2577–2580; f) Z. Xiang, T. Luo, K.
Lu, J. Cui, X. Shi, R. Fathi, J. Chen, Z. Yang, Org. Lett. 2004,
6, 3155–3158; g) V. R. Batchu, D. K. Barange, D. Kumar, B. R.
Sreekanth, K. Vyas, E. A. Reddy, M. Pal, Chem. Commun.
2007, 19, 1966–1968; h) P. Thansandote, D. G. Hulcoop, M.
Langer, M. Lautens, J. Org. Chem. 2009, 74, 1673–1678; i) Z.
He, A. K. Yudin, Org. Lett. 2006, 8, 5829–5832; j) T. Furuta,
Y. Kitamura, A. Hashimoto, S. Fujii, K. Tanaka, T. Kan, Org.
Lett. 2007, 9, 183–186; with Ni: k) T. Miura, M. Yamauchi,
M. Murakami, Org. Lett. 2008, 10, 3085–3088; l) Y. Kajita, S.
Matsubara, T. Kurahashi, J. Am. Chem. Soc. 2008, 130, 6058–
6059; m) C. C. Liu, K. Parthasarathy, C. H. Cheng, Org. Lett.
2010, 12, 3518–3521; with Cu: n) F. Wang, H. Liu, H. Fu, Y.
Jiang, Y. Zhao, Org. Lett. 2009, 11, 2469–2472; o) J. Lu, X.
Gong, H. Yang, H. Fu, Chem. Commun. 2010, 46, 4172–4174;
p) Y. Shi, X. Zhu, H. Mao, H. Hu, C. Zhu, Y. Cheng, Chem.
Eur. J. 2013, 19, 11553–11557; with Rh: q) N. Guimond, C.
Gouliaras, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908–
6909; with Rh: r) N. Guimond, S. I. Gorelsky, K. Fagnou, J.
Am. Chem. Soc. 2011, 133, 6449–6457.
Conclusions
We developed a copper-catalyzed tandem reaction of 2-
(1-alkynyl)benzaldimines with water. This method provides
straightforward and facile entry to various isoquinolin-
1(2H)-one derivatives. Further study of the reaction scope
and applications is still underway in our laboratory.
Experimental Section
General Procedures for the Synthesis of Isoquinolin-1(2H)-ones 2: A
25 mL tube was charged with 2-alkynylbenzaldehydeimine deriva-
tive 1 (0.2 mmol), Cu(OAc)2·H2O (0.06 mmol), H2O (1.0 mmol),
and toluene (1.5 mL). The tube was sealed with a Teflon®-lined
cap, and the mixture was stirred at 130 °C for 12 h. Subsequently,
the mixture was purified by column chromatography (silica gel; pe-
troleum ether/ethyl acetate, 5:1) to give the desired product.
General Procedures for the Synthesis of 4-Halogenoisoquinolin-
1(2H)-ones 3: A 25 mL tube was charged with 2-alkynylbenzalde-
hyde derivative 1 (0.2 mmol), Cu(OAc)2·H2O (0.06 mmol), NXS
(0.2 mmol), H2O (0.6 mmol), and chlorobenzene (1.5 mL). The
tube was sealed with a Teflon-lined cap, and the mixture was stirred
at 100 °C for 12 h. Subsequently, the mixture was purified by col-
umn chromatography (silica gel; petroleum ether/ethyl acetate, 5:1)
to give the desired product.
[4]
[5]
G. Zeni, R. C. Larock, Chem. Rev. 2004, 104, 2285–2310.
For selected examples of the 6-endo-trig intramolecular cycliza-
tion of 2-alkynylbenzamides – with electrophiles, see: a) S.
Mehta, T. Yao, R. C. Larock, J. Org. Chem. 2012, 77, 10938–
10944; b) J. S. S. Neto, D. F. Back, G. Zeni, Eur. J. Org. Chem.
2015, 1583–1590; with bases: c) N. G. Kundu, M. W. Khan,
Tetrahedron 2000, 56, 4777–4792; with Pd: d) A. Nagarajan,
T. R. Balasubramanian, Indian J. Chem. 1989, 28B, 67; e) H.
Sashida, A. Kawamukai, Synthesis 1999, 1145–1148; f) C. Sun,
B. Xu, J. Org. Chem. 2008, 73, 7361–7364; with Cu: g) R. G.
Chary, G. Dhananjaya, K. V. Prasad, S. Vaishaly, Y. S. S.
Ganesh, B. Dulla, K. S. Kumar, M. Pal, Chem. Commun. 2014,
50, 6797–6800; with Ag: h) G. Liu, Y. Zhou, D. Ye, D. Zhang,
X. Ding, H. Jiang, H. Liu, Adv. Synth. Catal. 2009, 351, 2605–
2610.
Acknowledgments
This work was financially supported by the National Natural Sci-
ence Foundation of China (NSFC) (No. 21302157), National Basic
Research Program of China (973 Program, No. 2012CB821600),
Program for Changjiang Scholars and Innovative Research Team
in University (PCSIRT), and Fundamental Research Funds for the
Central Universities (No. 2013121015).
[6]
For selected examples on the 5-exo-trig intramolecular cycliza-
tion of 2-alkynylbenzamides, see: a) M. Jithunsa, M. Ueda, O.
Miyata, Org. Lett. 2011, 13, 518–521; b) B. Yao, Q. Wang, J.
Zhu, Angew. Chem. Int. Ed. 2013, 52, 12992–12996; Angew.
Chem. 2013, 125, 13230–13234; c) M. Hellal, G. D. Cuny, Tet-
rahedron Lett. 2011, 52, 5508–5511; d) L. Zhang, Y. Zhang, X.
Wang, J. Shen, Molecules 2013, 18, 654–665; e) J. Pan, Z. Xu,
R. Zeng, J. Zou, Chin. J. Chem. 2013, 31, 1022–1026; f) H.
Cao, L. McNamee, H. Alper, Org. Lett. 2008, 10, 5281–5284;
g) L. Li, M. Wang, X. Zhang, Y. Jiang, D. Ma, Org. Lett. 2009,
11, 1309–1312.
[1] a) A. Saeed, Z. Ashraf, Pharm. Chem. J. 2008, 42, 277–280,
and references cited therein; b) J. F. Guastavino, S. M. Barolo,
R. A. Rossi, Eur. J. Org. Chem. 2006, 3898–3902 and references
cited therein; c) K. B. Simonsen, J. Kehler, K. Juhl, N.
Khanzhin, S. M. Nielsen, Lundbeck & Co As H, DK,
WO2008131779A1, 2008; d) Y. H. Wong, M. K. C. Ho, Y. Q.
Hu, D. C. New, X. X. He, H. H. Pang, Univ. Hong Kong Sci-
ence & Techn, CN, WO2008092292A1, 2008; e) O. Plettenburg,
K. Lorenz, J. Goerlitzer, M. Loehn, Sanofi Aventis, FR,
WO2008077555A2, 2008; f) Y. Asano, S. Kitamura, T. Ohra,
F. Itoh, M. Kajino, T. Tamura, M. Kaneko, S. Ikeda, H. Igata,
T. Kawamoto, S. Sogabe, S. Matsumoto, T. Tanaka, M. Yama-
guchi, H. Kimura, S. Fukumoto, Bioorg. Med. Chem. 2008, 16,
4699–4714; g) M. Nagarajan, A. Morrell, B. C. Fort, M. R.
[7]
[8]
P. C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634–7644.
For Larock’s work – with Pd, see: a) G. Dai, R. C. Larock,
Org. Lett. 2001, 3, 4035–4038; b) G. Dai, R. C. Larock, J. Org.
Chem. 2002, 67, 7042–7047; c) G. Dai, R. C. Larock, J. Org.
Eur. J. Org. Chem. 2015, 5914–5918
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5917