2090
M. MIYASATO and K. AJISAKA
Table 2. 13C NMR Data for D-Galactosyl-D-mannose
7) Ajisaka, K., Fujimoto, H., and Miyasato, M., An ꢂ-L-
fucosidase from Penicillium multicolor as a candidate
enzyme for the synthesis of ꢂ(1!3)-linked fucosyl
oligosaccharides by transglycosylation. Carbohydr. Res.,
309, 125–129 (1998).
Compound
Gal-ꢀ-(1!3)Man Gal-ꢀ-(1!4)Man Gal-ꢀ-(1!6)Man
Gal C1
C2
C3
101.826
71.672
73.457
69.632
76.147
61.946
94.581
69.214
78.915
66.103
73.457
61.779
102.432
69.703
70.749
67.223
75.407
61.384
92.410
68.830
72.538
78.238
72.640
60.678
103.531
70.808
70.970
68.830
75.348
61.204
94.311
70.324
71.545
66.788
72.797
69.016
8) Yoon, J. H., and Ajisaka, K., The synthesis of galacto-
pyranosyl derivatives with ꢀ-galactosidases of different
origins. Carbohydr. Res., 292, 153–163 (1996).
9) Dumorter, V., Montreuil, J., and Bouquelet, S., Primary
structure of ten galactosides formed by transglycosyla-
tion during lactose hydrolysis by Bifidobacterium bifi-
dum. Carbohydr. Res., 201, 115–123 (1990).
10) Sakai, K., Katsumi, R., Ohi, H., Usui, T., and Ishido, Y.,
Enzymatic syntheses of N-acetyllactosamine and N-
acetylallolactosamine by the use of ꢀ-D-galactosidases.
J. Carbohydr. Chem., 11, 553–565 (1992).
C4
C5
C6
Man C1
C2
C3
C4
C5
C6
11) Usui, T., Kubota, S., and Ohi, H., A convenient synthesis
of ꢀ-galactosyl disaccharide derivatives using the ꢀ-D-
galactosidase from Bacillus circulans. Carbohydr. Res.,
244, 315–323 (1993).
12) Usui, T., Morimoto, S., Hayakawa, Y., Kawaguchi, M.,
Murata, T., Matahira, Y., and Nishida, Y., Regioselec-
tivity of ꢀ-galactosyl-disaccharide formation using the
ꢀ-D-galactosidase from Bacillus circulans. Carbohydr.
Res., 285, 29–39 (1996).
13) Hedbys, L., Larsson, P. O., Mosbach, K., and Svensson,
S., Synthesis of the disaccharide 6-O-ꢀ-D-galactopyra-
nosyl-2-acetamideo-2-deoxy-D-galactose using immobi-
lized ꢀ-galactosidase. Biochem. Biophys. Res. Commun.,
123, 8–15 (1984).
mannoses of different linkages may be utilized for
various biological studies. For example, a repeating unit
of D-galactosyl-D-mannose has been found to be a
component unit of Leishmania lipophosphoglycan, and
the disaccharide unit is supposed to be related to
endothelial adhesion to monocyte.17,18) Therefore these
disaccharides are expected to be utilized to clarify the
biological roles and functions of D-galactosyl-D-man-
nose sequence in Leishmania.
References
14) Kiyohara, T., Terao, T., Nakana, K. S., and Osawa,
T., Purification and characterization of ꢀ-N-acetyl-
hexosaminidases and ꢀ-galactosidase from Streptococ-
cus 6646 K. J. Biochem., 80, 9–17 (1976).
15) Hedbys, L., Johansson, E., Mosbach, K., Larsson, P. O.,
Gunnarsson, A., Svensson, S., and Lonn, H., Synthesis of
Galꢀ1-3GlcNAc and Galꢀ1-3GlcNAcꢀ-SEt by an enzy-
matic method comprising the sequential use of ꢀ-
galactosidases from bovine testes and Escherichia coli.
Glycoconjugate J., 6, 161–168 (1989).
1) Matsuo, I., Isomura, M., and Ajisaka, K., The first
synthesis of Neu5Acꢂ2-3Galꢀ1-4GlcNAcꢀ1-2Manꢂ1-
Ser — a new discovered component of ꢂ-dystroglycan.
Tetrahedron Lett., 40, 5047–5050 (1999).
2) Ajisaka, K., Miyasato, M., Ito, C., Fujita, F., Yamazaki,
Y., and Oka, S., Linkage of sugar chains to a fragment
peptide of FGF-5S by a chemoenzymatic strategy and
changes in the rate of proteolytic hydrolysis. Glycocon-
jugate J., 18, 301–308 (2001).
3) Ito, Y., and Sasaki, T., Cloning and characterization of
the gene encoding a novel ꢀ-galactosidase from Bacillus
circulans. Biosci. Biotechnol. Biochem., 61, 1270–1276
(1997).
4) Fujimoto, H., Miyasato, M., Ito, Y., Sasaki, T., and
Ajisaka, K., Purification and properties of recombinant
ꢀ-galactosidase from Bacillus circulans. Glycoconjugate
J., 15, 155–160 (1998).
5) Zeng, X., Yoshino, R., Murata, T., Ajisaka, K., and Usui,
T., Regioselective synthesis of p-nitrophenyl glycosides
of ꢀ-D-galactopyranosyl disaccharides by transglycosy-
lation with ꢀ-galactosidases. Carbohydr. Res., 325, 120–
131 (2000).
6) Ajisaka, K., and Yamamoto, Y., Control of the regio-
selectivity in the enzymatic synthesis of oligosaccharides
using glycosidases. Trends in Glycosci. Glycotech., 14,
1–11 (2002).
16) Gambert, U., Gonzalez, R., Farkas, E., Thiem, J.,
Bencomo, V. V., and Liptak, A., Galactosylation with
ꢀ-galactosidase from bovine testes employing modified
acceptor substrates. Bioorg. Med. Chem., 5, 1285–1291
(1997).
17) Hatzigeorgiou, D. E., Geng, J., Zhu, B., Zhang, Y., Liu,
K., Rom, W. N., Fenton, M. J., Turco, S. J., and Ho, L.,
Lipophosphoglycan from Leishmania suppresses ago-
nist-induced interleukin 1ꢀ gene expression in human
monocytes via a unique promoter sequence. Proc. Natl.
Acad. Sci. U.S.A., 93, 14708–14713 (1996).
18) Lo, S. K., Bovis, L., Matura, R., Zhu, B., He, S., Lum,
H., Turco, S. J., and Ho, J. L., Leishmania Lipophos-
phoglycan reduces monocyte transendotherial migration:
modulation of cell adhesion molecules, intercellular
junctional proteins, and chemoattractants. J. Immunol.,
160, 1857–1865 (1998).