CrystEngComm
Paper
property of these spheres that make them potential adsor-
bents for preferential sequestering of carboxylic acid mole-
cules from solution.
2 (a) K. Ariga, H. Ito, J. P. Hillab and H. Tsukube, Chem. Soc.
Rev., 2012, 41, 5800–5835; (b) J. W. Steed and J. L. Atwood,
Supramolecular Chemistry, Wiley, New York, 2000; (c) H. He,
M. Feng, Q. Chen, X. Zhang and H. Zhan, Angew. Chem., Int.
Ed., 2016, 55, 936–940.
Conclusions
3 B. Bibal, C. Monging and D. M. Bassani, Chem. Soc. Rev.,
2014, 43, 4179–4198.
In summary, we have here reported the unprecedented ability
of HCMs as exo-templates to direct stereocontrolled [2 + 2]
photoreactions via surface recognition of different types of
olefins either in solution or in the solid state. The combina-
tion of supramolecular photochemistry assisted by HCMs in
solution with hydrothermal isomerisation can efficiently be
used for the regioselective synthesis of single rtct-dimers from
stilbenes via two sequential steps in solution. On the other
hand, CS–COOH spheres can efficiently drive the dimeriza-
tion of 4-cinammic acid derivatives to afford single α- or
β-dimers. The combination of self-assembly with sequential
grinding–UV irradiation cycles provides an efficient route to
obtain single dimers with high to quantitative yields in the
solid state. Both HCMs constitute new multivalent H-bonding
templates which can be easily prepared and may emerge as
novel alternative exo-templates versus endo-templates. Thus,
supramolecular nanochemistry opens up endless opportuni-
ties for designing a new class of multivalent nanotemplates
capable of favouring the regioselective preparation and/or im-
proving the yield of new and conventional cyclobutane-like
derivatives, which are difficult to access in the liquid phase or
by established solid state protocols. This supramolecular ap-
proach can be very helpful to overcome the limitations im-
posed by the topochemical postulates in the regioselective
obtention of dimers from crystalline assemblies. Additionally,
this alternative provides an efficient green route to scale these
reactions to gram quantities. The widespread potential use of
HCMs and other functionalized surfaces as templates is cur-
rently being explored for the dimerization of other stilbenes,
stilbazoles and unsaturated acids. Likewise, the optimization
of the HCMs/olefin mass ratio remains under investigation in
order to evaluate the efficiency of HCM templates in solution.
4 (a) For recent reviews on solid state reactivity: A. Briceño and
A. M. Escalona, Photochemistry, RSC, Cambridge, 2016, vol. 43,
pp. 286–320; (b) K. Biradha and R. Santra, Chem. Soc. Rev.,
2013, 42, 950–967; (c) Y. Sonoda, Molecules, 2011, 16, 119–148;
(d) I. Weissbuch and M. Lahav, Chem. Rev., 2011, 111,
3236–3267; (e) L. R. MacGillivray, J. Org. Chem., 2008, 73,
3311–3317; ( f ) L. R. MacGillivray, G. S. Papaefstathiou, T.
Friščić, T. D. Hamilton, D.-K. Bučar, Q. Chu, D. B. Varshney
and I. G. Georgiev, Acc. Chem. Res., 2008, 41, 280–291; (g) M.
Nagarathinam, A. M. P. Peedikakkal and J. J. Vittal, Chem.
Commun., 2008, 5277–5288.
5 (a) G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647–678; (b)
S. K. Kearsley, The Prediction of Chemical Reactivity Within
Organic Crystals Using Geometric Criteria, in Organic Solid
State Chemistry, ed. G. R. Desiraju, Elsevier, New York, 1987,
pp. 69–115.
6 (a) S. R. Salpage, Y. Xu, B. Som, A. J. Sindt, M. D. Smith and
L. S. Shimizu, RSC Adv., 2016, 6, 18350–18355; (b)
Photochemistry in Organized and Constrained Media, ed. V.
Ramamurthy, VCH, New York, 1991.
7 M. Yoshizawa, J. K. Klosterman and M. Fujita, Angew. Chem.,
Int. Ed., 2009, 48, 3418–3438.
8 H. S. Banu, A. Lalitha, C. Srinivasan, K. Pitchumani and C.
Srinivasan, Chem. Commun., 1999, 607–608.
9 L. S. Kaanumalle and V. Ramamurthy, Chem. Commun.,
2007, 1062–1064.
10 (a) M. Pattabiraman, A. Natarajan, R. Kaliappan, J. T. Mague
and V. Ramamurthy, Chem. Commun., 2005, 4542–4544; (b)
M. Pattabiraman, A. Natarajan, L. S. Kaanumalle and V.
Ramamurthy, Org. Lett., 2005, 7, 529–532; (c) S. Y. Jon, Y. H.
Ko, S. H. Park, H. J. Kim and K. Kim, Chem. Commun.,
2001, 1938–1939.
Conflicts of interest
11 (a) Y. Nishioka, T. Yamaguchi, M. Yoshizawa and M. Fujita,
J. Am. Chem. Soc., 2007, 129, 7000–7001; (b) K. Takaoka, M.
Kawano, T. Ozeki and M. Fujita, Chem. Commun.,
2006, 1625–1627; (c) M. Yoshizawa, Y. Takeyama, T. Okano
and M. Fujita, J. Am. Chem. Soc., 2003, 125, 3243–3247.
12 (a) Y. Ishida, Y. Kai, S.-Y. Kato, A. Misawa, S. Amano, Y.
Matsuoka and K. Saigo, Angew. Chem., Int. Ed., 2008, 47,
8241–8245; (b) Y. Ishida, S. Amano, N. Iwahashi and K.
Saigo, J. Am. Chem. Soc., 2006, 128, 13068–13069; (c) S.
Amano, Y. Ishida and K. Saigo, Chem. – Eur. J., 2007, 13,
5186–5196.
13 (a) K. Tagaki, T. Scichi, T. Usami and Y. Sawaki, J. Am. Chem.
Soc., 1993, 115, 4339–4344; (b) H. Usami, K. Tagaki and Y.
Sawaki, J. Chem. Soc., Faraday Trans., 1992, 88, 77–81.
14 (a) N. Vallavoju and J. Sivaguru, Chem. Soc. Rev., 2014, 43,
4084–4101; (b) V. Ramamurthy, Acc. Chem. Res., 2015, 48,
2904–2917.
There are no conflicts to declare.
Acknowledgements
We thank FONACIT (grant LAB-97000821) for financial sup-
port. A. Briceño for technical assistance and the Language In-
stitute of Universidad Nacional de San Luis for language revi-
sion of the manuscript.
Notes and references
1 (a) J.-M. Lehn, Supramolecular Chemistry: Concepts and
Perspectives, VCH, Weinheim, 1995, pp. 139–197; (b) J.-M.
Lehn, Chem. Soc. Rev., 2007, 36, 151–160; (c) C. P. Pradeep,
D.-L. Long, G. N. Newton, Y.-F. Song and L. Cronin, Angew.
Chem., Int. Ed., 2008, 47, 4388–4391.
This journal is © The Royal Society of Chemistry 2018
CrystEngComm