3: 1H NMR δH (500 MHz, CDCl3, 323 K): δ = 9.48 (s, 1H, –NHCO),
9.04 (d, 2H, J = 5.0 Hz, Hβpyr), 9.00 (d, 2H, J = 5.0 Hz, Hβpyr), 8.97 (s,
2H, –NHCO), 8.94 (d, 2H, J = 5.0 Hz, Hβpyr), 8.79 (d, 2H, J = 5.0 Hz,
coordination site have been achieved through the substitution
of the para hydrogen atom by NMe2 and NO2 groups. The
results indicate that closely related catalysts can influence very
differently the reduction of dioxygen. For instance, in this
new series, only one of the bimetallic complexes is a selective
4eϪ catalyst. Indeed, in the case of the –NMe2 substituent, the
copper might be in a suitable electronic environment to interact
properly with the iron-bound O2 in such a way that the cleavage
of the O–O bond occurs. The adsorption of these molecules
could also be affected by as light structural modifications as
those performed in this work. These results confirm that, for
synthetic molecules adsorbed at the surface of an electrode, the
presence of a copper center does not improve the catalysis in
comparison with iron-only analogues.
These observations demonstrate the fact that precise com-
parisons should be performed only between very closely related
structures. Besides, in order to examine the influence of the
Tyr244 motif, a third generation of tren-capped catalysts is
under investigation. In this series, both the location and the
properties of the group mimicking the tyrosine will be
modulated.
Hβpyr), 8.46 (d, 2H, J = 8.0 Hz, Haro), 8.22 (d, 1H, J = 8.0 Hz, Haro), 8.03
(d, 2H, J = 9.0 Hz, Haro), 7.93 (d, 4H, J = 9.0 Hz, Haro), 7.91–7.79
(m, 6H, Haro), 7.67 (dd, 1H, Jo = 7.5 Hz, Jm = 1.5 Hz, Haro), 7.63–7.53
(m, 3H, Haro), 7.51 (td, 1H, Jo = 7.5 Hz, Jm = 1.0 Hz, Haro), 7.37 (t, 1H,
J = 7.5 Hz, Haro), 7.00 (d, 2H, J = 8.5 Hz, Haro), 6.73 (d, 4H, J = 8.5 Hz,
Haro), 6.39 (s, 1H, –NHCO), 2.25 (d, 2H, J = 22.5 Hz), 2.10–2.00 (m,
4H), 1.98–1.89 (m, 4H), 1.86–1.74 (m, 4H), 1.62 (m, 2H), 1.53 (s, 2H),
1.19 (s, 3H), 0.57 (m, 2H), 0.08 (m, 2H), Ϫ0.05 (m, 2H), Ϫ1.36 (m, 2H),
Ϫ1.83 (m, 2H), Ϫ1.99 (m, 2H), Ϫ2.49 (s, 2H, ϪNHpyr). Anal. Calcd. for
C82H75N15O10ؒ2CHCl3: C, 59.79, H, 4.72, N, 12.45, Found: C, 59.34, H,
4.84, N, 12.44%. 3Fe: MS (FAB): m/z = 1484.6 [M]ϩ. 3FeCu: HR-MS
(LSI-MS): calcd. m/z = 1484.5092 for C82H74N15O4Fe [M Ϫ (CuBr) ϩ
H]ϩ, Found 1484.5088.
‡ The diameter of the highly oriented graphite electrode (edge plane:
EPGE) disk is 6 mm, the collecting efficiency of the ring-disk electrode
being 27% (Pine Instrument Co.). The graphite electrode is modified
by dipping it 5 minutes in the solution of the catalyst in CHCl3. A bi-
potentiostat (Solea-Tacussel) pilots the disk potential, when the
platinum ring is maintained at 0.8 V vs. SCE for experiments at
pH 6.86 (KH2PO4 0.025 M ϩ Na2HPO4 0.025 M).
1 S. Ferguson-Miller and G. T. Babcock, Chem. Rev., 1996, 96, 2889;
S. Yoshikawa, K. Shinzawa-Itoh and T. Tsukihara, J. Inorg. Bio-
chem., 2000, 82, 1.
2 D. L. Rousseau, S. H. Han, S. H. Song and Y. C. Ching, J. Raman
Spectrosc., 1992, 23, 551; T. Ogura, S. Takahashi, S. Hirota,
K. Shinzawa-Itoh, S. Yoshikawa, E. H. Appelman and T. Kitagawa,
J. Am. Chem. Soc., 1993, 115, 8527.
3 J. P. Collman, L. Fu, P. C. Herrmann and X. M. Zhang, Science,
1997, 275, 949.
4 M.-A. Kopf and K. D. Karlin, Inorg. Chem., 1999, 38, 4922.
5 Y. Naruta, T. Sasaki, F. Tani, Y. Tachi, N. Kawato and
N. Nakamura, J. Inorg. Biochem., 2001, 83, 239.
6 R. A. Ghiladi, R. M. Kretzer, I. Guzei, A. L. Rheingold,
Y. M. Neuhold, K. R. Hatwell, A. D. Zuberbuhler and K. D. Karlin,
Inorg. Chem., 2001, 40, 5754.
7 D. Ricard, B. Andrioletti, M. L’Her and B. Boitrel, Chem. Com-
mun., 1999, 1523.
8 D. Ricard, M. L’Her, P. Richard and B. Boitrel, Chem. Eur. J., 2001,
7, 3291.
9 M. Fabian, W. W. Wong, R. B. Gennis and G. Palmer, Proc. Natl.
Acad. Sci. USA, 1999, 96, 13114.
Notes and references
† Selected data for 1: 1H NMR δH (500 MHz, CDCl3, 323 K): δ = 10.13
(s, 1H, –NHCO), 9.67 (s, 2H, –NHCO), 9.02 (d, J = 5.0 Hz, 2H, Hβ-pyr),
8.99 (d, J = 5.0 Hz, 2H, Hβ-pyr), 8.92 (d, J = 5.0 Hz, 2H, Hβ-pyr), 8.71 (d,
J = 5.0 Hz, 2H, Hβ-pyr), 8.37 (d, J = 8.5 Hz, 2H, Haro), 8.18 (d, J = 8.0 Hz,
1H, Haro), 7.86–7.76 (m, 8H, Haro), 7.51 (td, J = 7.5 Hz, J = 1.0 Hz, 4H,
Haro), 7.43 (td, J = 7.5 Hz, J = 1.0 Hz, 2H, Haro), 7.23–7.16 (m, 4H),
7.13 (m, 5H), 6.82 (d, J = 7.0 Hz, 3H, Haro), 6.67 (m, 3H), 2.82 (d, J =
20.0 Hz, 4H, –CH2 benzyl), 2.41 (d, J = 15.0 Hz, 2H, –CH2 benzyl), 2.02–
1.63 (m, 12H, –CH2), 1.31 (s, 3H, –CH3), 0.56 (m, 2H), Ϫ0.06 (m, 4H),
Ϫ1.58 (m, 4H), Ϫ2.10 (m, 2H), Ϫ2.48 (s, 2H, –NHpyr). Anal. Calcd. for
C82H78N12O4ؒH2O: C, 74.98, H, 6.14, N, 12.80, Found: C, 75.03, H,
6.01, N, 12.62%; 1Fe: MS (MALDI-TOF, linear mode): m/z (%):
1348.96 (100) [Mϩ]. 1FeCu: MS (FAB): m/z = 1349.55 [M Ϫ (CuBr) ϩ
H]ϩ.
2: 1H NMR δH (500 MHz, CDCl3, 323 K): δ = 10.36 (s, 1H, –NHCO),
10.05 (s, 2H, –NHCO), 8.97 (d, 2H, J = 5.0 Hz, Hβpyr), 8.93 (d, 2H, J =
5.0 Hz, Hβpyr), 8.87 (d, 2H, J = 5.0 Hz, Hβpyr), 8.66 (d, 2H, J = 5.0 Hz,
10 S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono,
E. Yamashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu,
T. Mizushima, H. Yamaguchi, T. Tomizaki and T. Tsukihara,
Science, 1998, 280, 1723.
H
βpyr), 8.34 (d, 2H, J = 8.0 Hz, Haro), 8.02 (d, 1H, J = 8.0 Hz, Haro), 7.83–
7.70 (m, 6H), 7.72 (td, 1H, Jo = 8.5 Hz, Jm = 1.5 Hz, Haro), 7.50 (m, 4H,
Haro), 7.39 (td, 1H, Jo = 7.0 Hz, Jm = 1.0 Hz, Haro), 6.67 (d, 2H, J =
8.0 Hz, Haro), 6.49–6.40 (m, 10H), 5.30 (s, 1H, –NHCO), 2.92 (s, 6H,
–CH3), 2.83 (s, 9H, –CH3), 2.69 (m, 4H, –CH2benzyl), 2.28 (d, 2H, J =
13.5 Hz, –CH2benzyl), 2.15–1.70 (m, 12H, 2CH2benzyl ϩ 2CH3), 1.59 (m,
6H, –CH2benzyl), 0.49 (m, 2H, –CH2benzyl), Ϫ0.25 (m, 4H, –CH2benzyl),
Ϫ1.55 (m, 4H, –CH2benzyl), Ϫ2.08 (m, 2H, –CH2benzyl), Ϫ2.56 (s, 2H,
–NHpyr). Anal. Calcd. for C88H93N15O4ؒCH2Cl2: C, 70.81, H, 6.64, N,
13.92, Found: C, 70.44, H, 6.32, N, 11.91%; 2Fe: MS (MALDI-TOF):
m/z = 1477.9 [M]ϩ. 2FeCu: MS (MALDI-TOF): m/z = 1478.7 [M Ϫ
(CuBr) ϩ H]ϩ.
11 J. P. Collman, Inorg. Chem., 1997, 36, 5145.
12 J. P. Collman, C. J. Sunderland and R. Boulatov, Inorg. Chem.,
2002, 41, 2282; R. Boulatov, J. P. Collman, I. M. Shiryaeva and
C. J. Sunderland, J. Am. Chem. Soc., 2002, 124, 11923.
13 D. Ricard, A. Didier, M. L’Her and B. Boitrel, ChemBioChem, 2001,
144.
14 J. P. Collman, X. Zhang, P. C. Herrmann, E. S. Uffelman, B. Boitrel,
A. Straumanis and J. I. Brauman, J. Am. Chem. Soc., 1994, 116,
2681.
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 1 2 7 4 – 1 2 7 6
1276