TABLE 1. Indium-Catalyzed C-S Cross-Coupling of Thiophenol
Indium-Catalyzed C-S Cross-Coupling of Aryl
with Iodobenzenea
Halides with Thiols
V. Prakash Reddy, K. Swapna, A. Vijay Kumar, and
K. Rama Rao*
Organic Chemistry DiVision I, Indian Institute of Chemical
entry
base
solvent
yieldb (%)
Technology, Hyderabad 500 007, India
1
2
3
4
5
6
Cs2CO3
K3PO4
NaOMe
KOH
KOH
KOH
DMSO
DMSO
DMSO
DMSO
toluene
DMF
72
trace
0
96
trace
trace
ReceiVed December 13, 2008
a Reaction conditions: thiophenol (1.0 mmol), iodobenzene (1.1
mmol), In(OTf)3 (10 mol %)/ligand (20 mol %), base (2.0 equiv),
solvent (2.0 mL), 135 °C, 24 h. b Yield of isolated product after flash
chromatography.
C-S cross-coupling;7 however, this protocol was ineffective
when using aliphatic thiols for C-S coupling. Therefore, the
iron-catalyzed C-S cross-coupling reaction needs to be modified
to expand the scope of these methodologies and to employ more
universal ligands.
In this study, we report an efficient indium-catalyzed C-S
cross-coupling of aryl halides with various aliphatic and aromatic
thiols using N,N,N′,N′-tetramethylethylenediamine (TMEDA)
as the ligand. In the first instance, we have studied the cross-
coupling of iodobenzene (1) with thiophenol (2) as the model
reaction in the presence of In(OTf)3 (10 mol %)/TMEDA (20
mol %) and KOH in DMSO at 135 °C for 24 h, and the
corresponding aryl sulfide (3) was obtained in 96% yield (Table
1, entry 4). To the best of our knowledge, this is the first
In(OTf)3-catalyzed cross-coupling of aryl halides with thiols to
form aryl sulfides.
To optimize the reaction conditions, we have made a study
about the effect of different solvents and bases on the C-S
cross-coupling reaction catalyzed by In(OTf)3. The results
are shown in Table 1 (entries 1-6). Among these solvents,
DMSO was found to be most efficient. In a comparison of
the efficiency of the base, KOH was found to act as an
excellent base, whereas Cs2CO3 was effective to some extent
and other bases, such as K3PO4 and NaOMe, were not at all
effective.
Indium-catalyzed C-S cross-coupling of aromatic and alkane
thiols with aryl halides proceeds smoothly in the presence
of In(OTf)3 (10 mol %), TMEDA (20 mol %), and KOH as
a base in DMSO at 135 °C. When this protocol was utilized,
a variety of thiols could be cross-coupled with aryl halides
to afford the corresponding aryl sulfides in good to excellent
yields.
Aryl sulfides are an important class of organic compounds
found in numerous pharmaceutically active compounds1 as well
as in a number of drugs in therapeutic areas, such as diabetes,
inflammatory, immune, Alzheimer’s, and Parkinson’s diseases.2
In the past decade, palladium-,3 nickel-,4 copper-,5 and cobalt-
based6 catalytic systems have been studied for this purpose.
Recently, Bolm et al. reported the first genuine iron-catalyzed
(1) (a) Liu, L.; Stelmach, J. E.; Natarajan, S. R.; Chen, M.-H.; Singh, S. B.;
Schwartz, C. D.; Fitzgerald, C. E.; O’Keefe, S. J.; Zaller, D. M.; Schmatz, D. M.;
Doherty, J. B. Bioorg. Med. Chem. Lett. 2003, 13, 3979. (b) Kaldor, S. W.;
Kalish, V. J.; Davies, J. F., II.; Shetty, B. V.; Fritz, J. E.; Appelt, K.; Burgess,
J. A.; Campanale, K. M.; Chirgadze, N. Y.; Clawson, D. K.; Dressman, B. A.;
Hatch, S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. P.; Muesing, M. A.;
Patick, A. K.; Reich, S. H.; Su, K. S.; Tatlock, J. H. J. Med. Chem. 1997, 40,
3979.
Next, we investigated the effect of different combinations
of Lewis acids and a series of ligands on the course of the
reaction, and the results are shown in Table 2 (entries 1-16).
(2) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, R.; DeVries, P.; Leitza,
S.; Reilly, E. B.; Okasinski, G. F.; Fesik, S. W.; von Geldern, T. W. J. Med.
Chem. 2001, 44, 1202.
(3) (a) Mispelaere-Canivet, C.; Spindler, J.-F.; Perrio, S.; Beslin, P. Tetra-
hedron 2005, 61, 5253. (b) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587. (c)
Ferna´ndez Rodrı´guez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006,
128, 2180. (d) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397. (e)
Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069. (f) Li, G. Y. Angew.
Chem. 2001, 113, 1561; Angew. Chem., Int. Ed. 2001, 40, 1513. (g) BarbiKri,
R. S.; Bellato, C. R.; Dias, A. K. C.; Massabni, A. C. Catal. Lett. 2006, 109,
171. (h) Dickens, M. J.; Gilday, J. P.; Mowlem, T. J.; Widdowson, D. A.
Tetrahedron 1991, 47, 8621. (i) Ishiyama, T.; Mori, M.; Suzuki, A.; Miyaura,
N. J. Organomet. Chem. 1996, 525, 225. (j) Zheng, N.; McWilliams, J. C.; Fleitz,
F. J.; Armstrong, J. D.; Volante, R. P. J. Org. Chem. 1998, 63, 9606. (k) Mann,
G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem.
Soc. 1998, 120, 9205.
(5) (a) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4,
2803. (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517. (c) Wu,
Y.-J.; He, H. Synlett 2003, 1789. (d) Bates, C. G.; Saejueng, P.; Doherty, M. Q.;
Venkataraman, D. Org. Lett. 2004, 6, 5005. (e) Deng, W.; Zou, Y.; Wang, Y.-
F.; Liu, L.; Guo, Q.-X. Synlett 2004, 1254. (f) Palomo, C.; Oiarbide, M.; Lopez,
R.; Gomez-Bengoa, E. Tetrahedron Lett. 2000, 41, 1283. (g) Savarin, C.; Srogl,
J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309. (h) Herradura, P. S.; Pendola,
K. A.; Guy, R. K. Org. Lett. 2000, 2, 2019. (i) Chen, Y.-J.; Chen, H.-H. Org.
Lett. 2006, 8, 5609. (j) Zhu, D.; Xu, L.; Wu, F.; Wan, B. S. Tetrahedron Lett.
2006, 47, 5781. (k) Ley, S. V.; Thomas, A. W. Angew. Chem. 2003, 115, 5558;
Angew. Chem., Int. Ed. 2003, 42, 5400. (l) Sperotto, E.; Klink, G. P. M. V.; De
Vries, J. G.; Koten, G. V. J. Org. Chem. 2008, 73, 5625. (m) She, J.; Jiang, Z.;
Wang, Y. Tetrahedron Lett. 2009, 50, 593.
(4) (a) Cristau, H. J.; Chabaud, B.; Chene, A.; Christol, H. Synthesis 1981,
892. (b) Millois, C.; Diaz, P. Org. Lett. 2000, 2, 1705. (c) Percec, V.; Bae,
J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 6895. (d) Takagi, K. Chem. Lett.
1987, 2221.
(6) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613.
(7) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880.
10.1021/jo802731j CCC: $40.75
Published on Web 03/18/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 3189–3191 3189