6082
A. Hamze´ et al. / Tetrahedron Letters 44 (2003) 6079–6082
33. Rice, K.; Nuss, J. M. Bioorg. Med. Chem. Lett. 2001, 11,
753–755.
34. Gangloff, A. R.; Litvak, J.; Shelton, E. J.; Sperandio, D.;
Wang, V. R.; Rice, K. D. Tetrahedron Lett. 2001, 42,
1441–1443.
(m, 1H, CHa), 4.30–4.18 (m, 2H, CH2 Fmoc), 4.19 (t,
J=6.8 Hz, 1H, CH Fmoc), 3.22 (dd, J=15.6 Hz, 6.3 Hz,
1H, CHb), 3.12 (dd, J=15.5 Hz, 6.0 Hz, 1H, CHb), 2.60
(d, J=4.9 Hz, 2H, CH2b%), 2.28 (s, 3H). Compound 5b:
C28H25N3O5; 483.18 g/mol; Rf 0.7 (1% AcOH in EtOAc);
mp 125–127°C; [h]D=+7 (c 0.02, DMF); m/z (ES+) 484.3
35. He´bert, N.; Hannah, A. L.; Sutton, S. C. Tetrahedron
1
(M+H+), 967.2 (2M+H+); H NMR (400 MHz, CDCl3) l
Lett. 1999, 40, 8547–8550.
36. He´bert, N.; Hannah, A. L.; Trega Biosciences, WO 00/
25768 A1, 11 May 2000.
7.75 (d, J=8.1 Hz, 2Ha Fmoc), 7.55 (d, J=7.3 Hz, 2Hd
Fmoc), 7.38 (d, J=7.6 Hz, 2He phenyl), 7.20 (t, J=7.4
Hz, 2Hb Fmoc), 7.20–7.10 (m, 4H, 2Hc Fmoc+2Hf
phenyl), 5.58 (d, J=8.0 Hz, 1H, NH), 4.50–4.32 (m, 1H,
CHa), 4.30–4.12 (m, 2H, CH2 Fmoc), 4.05 (t, J=7.0 Hz,
1H, CH Fmoc), 3.35–3.10 (m, 2H, CH2b), 2.90–2.60 (m,
2H, CH2b%), 2.28 (s, 3H, CH3).
37. Conversion of the acyl-amidoxime 2b to the protected
oxadiazole derivative. A mixture of compound 2b (0.33 g,
0.59 mmol) in ethanol (7 mL) and sodium acetate (0.08 g,
0.59 mmol) in water (2 mL) was heated at 86°C for 5 h.
The product crystallized upon cooling to room tempera-
ture. It was collected by filtration and recrystallized from
ethanol to give the protected oxadiazole derivative (1,1-
dimethylethyl-3-(R)-[[(9H-fluoren-9-ylmethoxy)carbonyl]-
amino] - 4 - [3 - (4 - methylphenyl) - 1,2,4 - oxadiazol - 5 - yl]-
butanoate) as white crystals (0.21 g, 66%): mp 127–
129°C; m/z (ES+) 540.2 (M+H+), 562.2 (M+Na+), 484.3
(M-tBu+H+); HPLC tR: 4.31 min (see conditions under
39. Synthesis of Fmoc-(S)-b-HAsp-OAllyl. A mixture of
Fmoc-(R)-b-HAsp(OtBu)-OH
1 (0.5 g, 1.18 mmol),
sodium carbonate (0.25 g, 2.36 mmol) and allylbromide
(0.18 mL, 2.12 mmol) in DMF (10 mL) was stirred at
room temperature for 18 h. After this period, the solvent
was removed under reduced pressure and the residue was
dissolved in EtOAc. The organic layer was washed with
10% aqueous NaHCO3, 1 M KHSO4, brine, and dried
over MgSO4. Evaporating the solvent under vacuum
afforded crude Fmoc-(R)-b-HAsp(OtBu)-OAllyl which
was purified by flash chromatography on a silica gel
column (EtOAc/hex, 3:7). Colorless oil (0.523 g, 95%): Rf
0.54 (EtOAc/hex, 3:7); m/z (ES+) 466.1 (M+H+), 487.7
(M+Na+), 410.2 (M-tBu+H+), 931.2 (2M+H+); HPLC tR:
1
note c of Table 1); H NMR (400 MHz, CDCl3) l 7.88
(d, J=7.1 Hz, 2Ha Fmoc), 7.65 (d, J=7.5 Hz, 2Hd
Fmoc), 7.50 (t, J=7.0 Hz, 2He phenyl), 7.30 (t, J=7.5
Hz, 2Hb Fmoc), 7.25–7.18 (m, 4H, 2Hc Fmoc+2Hf
phenyl), 5.68 (d, J=8.8 Hz, 1H, NH), 4.52–4.40 (m, 1H,
CHa), 4.38–4.22 (m, 2H, CH2 Fmoc), 4.12 (t, J=6.9 Hz,
1H, CH Fmoc), 3.28 (dd, J=15.6 Hz, 5.8 Hz, 1H, CHb),
3.18 (dd, J=15.5 Hz, 6.0 Hz, 1H, CHb), 2.55 (d, J=5.0
Hz, 2H, CH2b%), 2.38 (s, 3H, CH3), 1.38 (s, 9H, tBu).
38. Compound 4a: C22H21N3O5; 407.15 g/mol; white powder;
mp 102–104°C; [h]D=+2 (c 0.02, DMF); m/z (ES+) 408.0
1
3.79 min; H NMR (400 MHz, CDCl3) l 7.75 (d, J=7.5
Hz, 2Ha Fmoc), 7.60 (d, J=7.3 Hz, 2Hd Fmoc) 7.40 (t,
J=7.4 Hz, 2Hb Fmoc), 7.31 (t, J=7.3 Hz, 2Hc Fmoc),
6.00–5.85 (m, 1H, CH allyl), 5.50 (d, J=8.8 Hz, 1H,
NH), 5.30 (q, J=10.2 Hz, 1.4 Hz, 2H, CꢀCH2 allyl), 4.60
(d, J=5.7 Hz, 2H, O-CH2 allyl), 4.38 (d, J=7.1 Hz, 2H,
CH2 Fmoc), 4.23 (t, J=6.9 Hz, 1H, CH Fmoc), 2.80 (dd,
J=16.6 Hz, 5.7 Hz, 1H, CHb), 2.68 (dd, J=6.1 Hz, 1H,
CHb), 2.60 (t, J=6.8 Hz, 2H, CH2b%), 1.42 (s, 9H, tBu).
The preceding tert-butyl-protected compound (0.517 g,
1.11 mmol) was treated with a 50% TFA solution in
DCM (8 mL) for 2 h at room temperature. The solvents
were then removed under reduced pressure and a mixture
of hexane/diethyl ether was added to the residue. The
compound Fmoc-(S)-b-HAsp-OAllyl precipitated as a
white powder and was collected by filtration (0.425 g,
94%): C23H23NO6; 409.15 g/mol; mp 84–86°C; m/z (ES+)
409.9 (M+H+), 432.2 (M+Na+), 819.0 (2M+H+); HPLC
tR: 2.99 min; 1H NMR (400 MHz, CDCl3) l 7.68 (d,
J=7.5 Hz, 2Ha Fmoc), 7.50 (d, J=7.4 Hz, 2Hd Fmoc),
7.31 (t, J=7.4 Hz, 2Hb Fmoc), 7.22 (t, J=6.8 Hz, 2Hc
Fmoc), 5.90–5.76 (m, 1H, CH allyl) 5.55 (d, J=8.3 Hz,
1H, NH), 5.22 (q, J=9.5 Hz, 1.4 Hz, 2H, CꢀCH2 allyl),
4.50 (d, J=5.4 Hz, 2H, O-CH2 allyl), 4.38–4.28 (m, 2H,
CH2 Fmoc), 4.18 (t, J=6.7 Hz, 1H, CH Fmoc), 2.80–2.58
(m, 4H, CH2b+CH2b%).
1
(M+H+), 815.3 (2M+H+); H NMR (400 MHz, CDCl3) l
7.55 (d, J=7.4 Hz, 2Ha Fmoc), 7.38 (d, J=7.3 Hz, 2Hd
Fmoc), 7.20 (t, J=7.3 Hz, 2Hb Fmoc), 7.15 (t, J=7.2
Hz, 2Hc Fmoc), 5.58 (d, J=8.5 Hz, 1H, NH), 4.48–4.32
(m, 1H, CHa), 4.30–4.12 (m, 2H, CH2 Fmoc), 4.10 (t,
J=6.8 Hz, 1H, CH Fmoc), 3.20 (dd, 1H, CHb), 3.10 (dd,
1H, CHb), 2.70–2.50 (m, 2H, CH2b%), 2.2 (s, 3H, CH3).
Compound 4b: C28H25N3O5; 483.18 g/mol; white powder;
mp 135–137°C; [h]D=−7 (c 0.02, DMF); m/z (ES+) 484.0
1
(M+H+), 506.4 (M+Na+), 967.5 (2M+H+); H NMR (400
MHz, CDCl3) l 7.95 (d, J=7.3 Hz, 2Ha Fmoc), 7.70 (d,
J=7.5 Hz, 2Hd Fmoc), 7.55 (d, J=6.9 Hz, 2He phenyl),
7.30 (t, J=7.1 Hz, 2Hb Fmoc), 7.32–7.20 (m, 4H, 2Hc
Fmoc+2Hf phenyl), 5.80 (d, J=8.6 Hz, 1H, NH), 4.70–
4.50 (m, 1H, CHa), 4.42–4.30 (m, 2H, CH2 Fmoc), 4.20
(t, J=6.4 Hz, 1H, CH Fmoc), 3.40 (dd, J=15.1 Hz, 5.4
Hz, 1H, CHb), 3.31 (dd, 1H, CHb), 2.90–2.70 (m, 2H,
CH2b%), 2.40 (s, 3H, CH3). Compound 5a: C22H21N3O5;
407.15 g/mol; Rf 0.67 (0.05% AcOH in EtOAc); mp
105–107°C; [h]D=−2 (c 0.014, DMF); m/z (ES+) 407.8
1
(M+H+), 815.2 (2M+H+); H NMR (400 MHz, CDCl3) l
7.62 (d, J=7.5 Hz, 2Ha Fmoc), 7.42 (d, J=7.4 Hz, 2Hd
Fmoc), 7.21 (t, J=7.4 Hz, 2Hb Fmoc), 7.16 (t, J=7.4
Hz, 2Hc Fmoc), 5.60 (d, J=8.8 Hz, 1H, NH), 4.48–4.35