Organic Letters
Letter
at −30 °C in the presence of 4 Å molecular sieves. This
reaction afforded the desired glycoside 31 in 76% yield as the
pure α-anomer, with the high selectivity seemingly a function
of the extra substitution at the 6-position of the donor
(Scheme 5). Coupling of acceptor 26 with p-tolyl 2-azido-
3,4,6-tri-O-benzyl-2-deoxy-α,β-D-thiogluopyranoside 32, pre-
pared according to the literature method,39 under the same
conditions gave the glycoside 33 in 62% yield as a 3:1 α,β-
mixture, but activation with NIS and TMS triflate in
dichloromethane in the presence of DMF25−27,40 afforded
the pure α-anomer of 33 in 51% yield together with 13% of
the recovered glycosyl acceptor 23 (Scheme 5). Deprotection
of both 31 and 33 was accomplished by hydrogenolysis over
palladium hydroxide on charcoal followed by heating to 60
°C with aqueous barium hydroxide, with final purification by
filtration on Sephadex C25 and lyophilization from aqueous
acetic acid. In this manner gentamicin B1 7 and gentamicin
X2 8 were obtained in 56% and 61% yield from 31 and 33,
respectively, in the form of their peracetate salts (Scheme 5).
Overall the synthesis of gentamicin B1 was accomplished
from sisomicin 9 in 6 steps and 13.8% yield. The synthesis of
gentamicin X2 was achieved from sisomicin 9 in 6 steps and
10.1% yield, which compares favorably with the precedent
(Schemes 1 and 2). The straightforward syntheses of the
common acceptor 26 and of the two donors 30 and 32,
together with the relatively high yields and excellent
selectivities of the coupling reactions, suggest that these
syntheses are potentially scalable should the need for larger
quantities of material arise. We anticipate that other minor
components of gentamicin should be similarly readily
available by glycosylation of 23 should the need arise.
ACKNOWLEDGMENTS
■
We thank the NIH (AI123352) for support of this work and
̈
Professor Erik C. Bottger, University of Zurich, Institute of
Medical Microbiology, for stimulating discussion.
REFERENCES
■
(2) Deubner, R.; Schollmayer, C.; Wienen, F.; Holzgrabe, U.
(3) Stypulkowska, K.; Blazewicz, A.; Fijalek, Z.; Sarna, K.
(4) Vydrin, A. F.; Shikhaleev, I. V.; Makhortov, V. L.; Shcherenko,
(5) Haddad, J.; Kotra, L. P.; Mobashery, S., Aminoglycoside
Antibiotics: Structures and Mechanisms of Action. In Glycochemsitry:
Principles, Synthesis, and Applications; Wang, P. G., Bertozzi, C. R.,
Eds.; Dekker: New York, 2001; pp 307−351.
(6) Akbergenov, R.; Shcherbakov, D.; Matt, T.; Duscha, S.; Meyer,
M.; Perez-Fernandez, D.; Pathak, R.; Harish, S.; Kudyba, I.;
Dubbaka, S. R.; Silva, S.; Ruiz Ruiz, M.; Salian, S.; Vasella, A.;
̈
Bottger, E. C. Decoding and Deafness: Two Sides of a Coin. In
Ribosomes: Structure, Function, and Dynamics; Rodnina, M. V.,
Wintermeyer, W., Green, R., Eds.; Springer-Verlag: Vienna, 2011; pp
249−261.
(7) Talaska, A. E.; Schacht, J. Adverse Effects of Aminoglycoside
Therapy. In Aminoglycoside Antibiotics: From Chemical Biology to
Drug Discovery; Arya, D. P., Ed.; Wiley: Hoboken, NJ, 2007; pp
255−266.
(9) Matsushita, T.; Sati, G. C.; Kondasinghe, N.; Pirrone, M. G.;
Kato, T.; Waduge, P.; Kumar, H. S.; Cortes Sanchon, A.; Dobosz-
Bartoszek, M.; Shcherbakov, D.; Juhas, M.; Hobbie, S. N.; Schrepfer,
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
̈
T.; Chow, C. S.; Polikanov, Y. S.; Schacht, J.; Vasella, A.; Bottger, E.
2019, 141, 5051−5061.
Complete experimental and characterization details and
copies of 1H and 13C NMR spectra of all new
(10) Quirke, J. C. K.; Rajasekaran, P.; Sarpe, V. A.; Sonousi, A.;
Osinnii, I.; Gysin, M.; Haldimann, K.; Fang, Q.-J.; Shcherbakov, D.;
AUTHOR INFORMATION
Corresponding Author
■
̈
Hobbie, S. N.; Sha, S.-H.; Schacht, J.; Vasella, A.; Bottger, E. C.;
David Crich − Department of Pharmaceutical and Biomedical
Sciences, Complex Carbohydrate Research Center, and
Department of Chemistry, University of Georgia, Athens,
̈
2020, 6, 168−172.
Author
(12) Sabbavarapu, N. M.; Pienko, T.; Zalman, B.-H.; Trylska, J.;
9, 503−508.
Parasuraman Rajasekaran − Department of Pharmaceutical
and Biomedical Sciences and Complex Carbohydrate Research
Center, University of Georgia, Athens, Georgia 30602, United
States
(13) Malik, V.; Rodino-Klapac, L. R.; Viollet, L.; Wall, C.; King,
W.; Al-Dahhak, R.; Lewis, S.; Shilling, C. J.; Kota, J.; Serrano-
Munuera, C.; Hayes, J.; Mahan, J. D.; Campbell, K. J.; Banwell, B.;
Dasouki, M.; Watts, V.; Sivakumar, K.; Bien-Willner, R.; Flanigan, K.
M.; Sahenk, Z.; Barohn, R. J.; Walker, C. M.; Mendell, J. R.
Complete contact information is available at:
Notes
The authors declare the following competing financial
interest(s): D.C. is a cofounder of and an equity holder in
Juvabis AG, a biotech company developing novel amino-
glycoside antibiotics.
̈
(14) Clancy, J. P.; Bebok, Z.; Ruiz, F.; King, C.; Jones, J.; Walker,
L.; Greer, H.; Hong, J.; Wing, L.; Macaluso, M.; Lyrene, R.;
D
Org. Lett. XXXX, XXX, XXX−XXX