ChemComm
Communication
Table 3 One-pot syntheses of dibenzopyranones (4)a,b
good efficiency. These novel methodologies are complementary to
previously reported synthetic procedures and enable easy and sustain-
able access to poly-substituted phenols and dibenzopyranones.
We are grateful to the National Natural Science Foundation
of China (21172057, 21272058), RFDP (20114104110005),
PCSIRT (IRT1061) and 2012IRTSTHN006 for financial support.
Notes and references
1 For recent reviews, see: (a) J.-C. Wasilke, S. J. Obrey, R. T. Baker and
G. C. Bazan, Chem. Rev., 2005, 105, 1001; (b) H.-C. Guo and J.-A. Ma,
Angew. Chem., Int. Ed., 2006, 45, 354; (c) C. M. Volla, I. Atodiresei and
M. Rueping, Chem. Rev., 2014, 114, 2390.
2 For recent examples, see: (a) C. Zhu and S. Ma, Org. Lett., 2014,
16, 1542; (b) C. C. J. Loh, I. Atodiresei and D. Enders, Chem. – Eur. J.,
2013, 19, 10822; (c) N. Kanbayashi, K. Takenaka, T. Okamura and
K. Onitsuka, Angew. Chem., Int. Ed., 2013, 52, 4897; (d) Z.-X. Jia,
Y.-C. Luo, Y. Wang, L. Chen, P.-F. Xu and B. Wang, Chem. – Eur. J.,
2012, 18, 12958; (e) Q. Cai, X.-W. Liang, S.-G. Wang, J.-W. Zhang,
X. Zhang and S.-L. You, Org. Lett., 2012, 14, 5022.
3 (a) Y. Y. Ku, T. Grieme, P. Raje, P. Sharma, S. A. King and
H. E. Morton, J. Am. Chem. Soc., 2002, 124, 4282; (b) K. Koch,
J. Podlech, E. Pfeiffer and M. Metzler, J. Org. Chem., 2005,
70, 3275; (c) H. Abe, K. Nishioka, S. Takeda, M. Arai, Y. Takeuchi
and T. Harayama, Tetrahedron Lett., 2005, 46, 3197; (d) C. Garino,
F. Bihel, N. Pietrancosta, Y. Laras, G. Quelever, I. Woo, P. Klein,
J. Bain, J. L. Boucher and J. L. Kraus, Bioorg. Med. Chem. Lett., 2005,
15, 135; (e) W. Sun, L. D. Cama, E. T. Birzin, S. Warrier, L. Locco,
R. Mosley, M. L. Hammond and S. P. Rohrer, Bioorg. Med. Chem.
Lett., 2006, 16, 1468; ( f ) J. Hou, P. Liu, H. Qu, P. Fu, Y. Wang,
Z. Wang, Y. Li, X. Teng and W. J. Zhu, J. Antibiot., 2012, 65, 523.
4 (a) N. Thasana, R. Worayuthakarn, P. Kradanrat, E. Hohn, L. Young and
S. Ruchirawat, J. Org. Chem., 2007, 72, 9379; (b) S. Furuyama and H. Togo,
Synlett, 2010, 2325; (c) Y. Li, Y.-J. Ding, J.-Y. Wang, Y.-M. Su and
X.-S. Wang, Org. Lett., 2013, 15, 2574; (d) G. J. Kemperman, B. Ter Horst,
D. van de Goor, T. Roeters, J. Bergwerff, R. van der Eem and J. Basten, Eur.
J. Org. Chem., 2006, 3169; (e) I. Hussain, V. T. H. Nguyen, M. A. Yawer,
T. T. Dang, C. Fischer, H. Reinke and P. Langer, J. Org. Chem., 2007,
72, 6255; ( f )W. Zhang, B. I. Wilke, J. Zhan, K. Watanabe, C. N. Boddy and
Y. J. Tang, J. Am. Chem. Soc., 2007, 129, 9304; (g) J. Luo, Y. Lu, S. Liu, J. Liu
and G.-J. Deng, Adv. Synth. Catal., 2011, 353, 2604; (h) E. J. Carlson,
A. M. S. Riel and B. J. Dahl, Tetrahedron Lett., 2012, 53, 6245; (i) R. Singha,
S. Roy, S. Nandi, P. Ray and J. K. Ray, Tetrahedron Lett., 2013, 54, 657;
( j) C. A. James and V. Snieckus, J. Org. Chem., 2009, 74, 4080.
a
Reaction conditions: 0.2 mmol of 1, 0.24 mmol of 2, 0.2 mmol of Cs2CO3,
0.2 mmol of anhydrous Na2SO4, 4 mL of CH3CN, 80 1C, 4 h; then, CO (1 atm),
0.02 mmol of Pd(OAc)2, 0.6 mmol of AgOAc, 80 1C, 48 h. b Isolated yield.
in Scheme 2. Initially, the base triggers the cascade process by
deprotonating 2a to give anion A, which then undergoes a Michael
addition onto 1a to afford the second anion B. Tautomerization of B
affords the third anion C. Next, an intramolecular aldol type reaction
followed by tautomerization takes place with C to give intermediate
D. Protonation of D affords 2-phenylphenol 3a. In the presence of
CO and catalysts, a C–H activation and carbonylation cascade occurs
with the in situ formed 3a to give dibenzopyranone 4a.5–7
5 K. Inamoto, J. Kadokawa and Y. Kondo, Org. Lett., 2013, 15, 3962.
6 S. Luo, F.-X. Luo, X.-S. Zhang and Z.-J. Shi, Angew. Chem., Int. Ed.,
2013, 52, 10598.
7 T.-H. Lee, J. Jayakumar, C.-H. Cheng and S.-C. Chuang, Chem.
Commun., 2013, 49, 11797.
8 For selected reviews on the chemistry of allenes, see: (a) A. Hoffmann-
In summary, a novel and efficient method for the synthesis of
2-arylphenols through Michael addition and intramolecular aldol
condensation of the easily obtainable 1-arylpenta-3,4-dien-2-ones with
activated ketones has been developed. Moreover, this convenient and
sustainable synthesis of 2-arylphenols was found to be also compa-
tible and combinable with a metal-catalyzed C–H activation and
CO-insertion to give diversely substituted dibenzopyranones with
¨
Roder and N. Krause, Angew. Chem., Int. Ed., 2004, 43, 1196; (b) S. Ma,
Chem. Rev., 2005, 105, 2829; (c) M. Brasholz, H.-U. Reissig and
R. Zimmer, Acc. Chem. Res., 2009, 42, 45; (d) S. Ma, Acc. Chem. Res.,
2009, 42, 1679; (e) C. Aubert, L. Fensterbank, P. Garcia, M. Malacriaand
A. Simonneau, Chem. Rev., 2011, 111, 1954; ( f ) N. Kraus and C. Winter,
Chem. Rev., 2011, 111, 1994; (g) S. Yu and S. Ma, Angew. Chem., Int. Ed.,
2012, 51, 3074; (h) J. Ye and S. Ma, Acc. Chem. Res., 2014, 47, 989;
(i) J. L. Bras and J. Muzart, Chem. Soc. Rev., 2014, 43, 3003.
9 For the Michael addition of b-diester to allenic ketones followed by
cyclization to give a lactone, see: S. Ma, S. Yin, L. Li and F. Tao, Org.
Lett., 2002, 4, 505.
10 (a)X.Fan,Y.Wang,Y.Qu,H.Xu,Y.He,X.ZhangandJ.Wang,J. Org. Chem.,
2011, 76, 982; (b) X. Zhang, X. Jia, L. Fang, N. Liu, J. Wang and X. Fan, Org.
Lett., 2011, 13, 5024; (c) X. Fan, Y. He, X. Zhang and J. Wang, Green Chem.,
2014, 16, 1393; (d) Q. Wang, L. Yang and X. Fan, Synlett, 2014, 687;
(e)X.Fan,Y.Wang,Y.He,S.GuoandX.Zhang,Eur. J. Org. Chem., 2014, 713.
11 For a one-pot two-step preparation of dibenzopyranone without CO
insertion, see: K. Vishnumurthy and A. Makriyannis, J. Comb. Chem.,
2010, 12, 664.
12 A. Chamakh and H. Amri, Tetrahedron Lett., 1998, 39, 375.
13 A. Nakhi, R. Adepu, D. Rambabu, R. Kishore, G. R. Vanaja,
A. M. Kalle and M. Pal, Bioorg. Med. Chem. Lett., 2012, 22, 4418.
Scheme 2 Plausible mechanisms for the formation of 3a and 4a.
14970 | Chem. Commun., 2014, 50, 14968--14970
This journal is ©The Royal Society of Chemistry 2014