C O M M U N I C A T I O N S
Scheme 2. Proposed Intermediates along the Reaction Pathway
To Generate 1a and 1b
Acknowledgment. We thank Indiana University-Bloomington,
the Camille and Henry Dreyfus Foundation, and the Ford Founda-
tion for financial support. D.J.M. is grateful to Dr. R. Waterman,
and Professors G. L. Hillhouse, C. C. Cummins, and K. G. Caulton
for insightful discussions. D.J.M. also thanks Prof. J. D. Prota-
siewicz for helpful suggestions and a generous gift of phosphine.
Supporting Information Available: Complete experimental prepa-
ration and crystallographic data for compounds 1-4 and the OEt2-free
adduct of 1b (PDF). This material is available free of charge via the
References
(1) (a) Lammertsma, K.; Vlaar, M. J. M. Eur. J. Org. Chem. 2002, 1127. (b)
Cowley, A. H. Acc. Chem. Res. 1997, 30, 445. (c) Cowley, A. H.; Barron,
A. R. Acc. Chem. Res. 1988, 21, 81. (d) Mathey, F. Angew. Chem., Int.
Ed. 2003, 42, 1578 and references therein.
(2) (a) Wigley, D. A. Prog. Inorg. Chem. 1994, 113, 2985. (b) Nugent, W.
A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons:
New York, 1988.
(3) (a) Hou, Z. M.; Stephan, D. W. J. Am. Chem. Soc. 1992, 114, 10088. (b)
Hou, Z. M.; Breen, T. L.; Stephan, D. W. Organometallics 1993, 12, 3158.
(c) Breen, T. L.; Stephan, D. W. J. Am. Chem. Soc. 1995, 117, 11914.
(d) Graham, T.; Stephan, D. W., private communication.
(4) Urnezius, E.; Lam, K.-C.; Rheingold, A. L.; Protasiewicz, J. D. J.
Organomet. Chem. 2001, 630, 193.
reagents in Et2O to -20 °C, a resonance assigned to 2b (19 ppm,
JP-H ) 556 Hz, purple solution)21 is observed. From -18 to -5
°C, the solution changes to green, and two resonances centered at
337 and 285 ppm are generated which vanish quickly to form a
resonance at 153 ppm. All three resonances lack P-H coupling,
thus consistent with formation of 3b and 4b, respectively. The two
downfield shift peaks for 3b are suggestive of two isomers being
present in solution (vide infra). Warming above -5 °C causes a
color change to red-brown and generates the resonance correspond-
ing to 1b (vide supra), concurrent with disappearance of the
downfield shifts attributed to 3b and 4b.20
(5) Other Zr phosphinidene complexes have been isolated by trapping
experiments. Mahieu, A.; Igau, A.; Majoral, J.-P. Phosphorus Sulfur 1995,
104, 235.
(6) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int. Ed.
Engl. 1993, 32, 756.
(7) Bonanno, J. B.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc.
1994, 116, 11159.
In an effort to kinetically stabilize titanium-phosphinidene 3, a
likely intermediate generated from the reaction to form 1,
(Nacnac)TidCHtBu(OTf) was treated with the bulkier phosphide
LiPHMes* (Mes*- ) 2,4,6-tBu3C6H2) in pentane at -35 °C
(8) Hitchcock, P. B.; Lappert, M. F.; Leung, W. P. J. Chem. Soc., Chem.
Commun. 1987, 1282.
(9) Cowley, A. H.; Pellerin, B.; Atwood, J. L.; Bott, S. G. J. Am. Chem. Soc.
1990, 112, 6734.
(10) A uranium phoshinidene has also been prepared. Arney, D. S. J.; Schnabel,
R. C.; Scott, B. C.; Burns, C. J. J. Am. Chem. Soc. 1996, 118, 6780.
(11) (a) Mathey, F. Angew. Chem., Int. Ed. Engl. 1987, 26, 275. (b) Wit, J. B.
M.; van Eijkel, G. T.; de Kanter, F. J. J.; Schakel, M.; Ehlers, A. W.;
Lutz, M.; Spek, A. L.; Lammertsma, K. Angew. Chem., Int. Ed. 1999,
38, 2596.
(12) (a) Sterenberg, B. T.; Carty, A. J. J. Organomet. Chem. 2001, 617, 696.
(b) Sterenberg, B. T.; Udachin, K. A.; Carty, A. J. Organometallics 2001,
20, 2657. (c) Sterenberg, B. T.; Udachin, K. A.; Carty, A. J. Organome-
tallics 2001, 20, 4463.
t
(Scheme 2). Accordingly, complex (Nacnac)TidPMes*(CH2 Bu)
(3c)20 is isolated in good yield (g78%), inasmuch as intermediate
(Nacnac)TidCHtBu(PHMes*) 2c is observed to form and decay
when monitoring the reaction mixture (31P NMR: Et2O, -10 °C,
31 ppm, JPH ) 555 Hz).20,21 Unlike putative 3a and 3b, phosphin-
idene 3c is relatively stable both in solution and in the solid state,
therefore suggesting that 3c is the kinetic product while 1a and 1b
are thermodynamic products. Large blocks of dark-green 3c were
grown from pentane, and the molecular structure is depicted in
Figure 1.20 The structure of 3c displays a four-coordinate titanium-
phosphinidene complex with a super short TidP bond (2.1831(4)
Å)22 and a linear TidP-Cipso angle (164.44(5)°). Examples of linear
MdP-R phosphinidene species are exceedingly rare and often arise
from formation of a pseudo-triple bond.1,6,9 31P NMR solution
spectra of 3c manifest two resonances at 242 and 216 ppm, also
consistent with two isomers present in solution. Formation of
these isomers could occur for steric reasons or by deviation of the
“TidPAr” fragment from the NCCCN ligand plane.23 Unfortunately
variable-temperature 31P NMR (25-40 °C) leads to decomposition
instead of interconversion between the two isomers.
(13) Termaten, A. T.; Nijbacker, T.; Schakel, M.; Lutz, M.; Spek, A. L.;
Lammertsma, K. Chem.-Eur. J. 2003, 9, 2200.
(14) Termaten, A. T.; Aktas, H.; Schakel, M.; Ehlers, A. W.; Lutz, M.; Spek,
A. L.; Lammertsma, K. Organometallics 2003, 22, 1827.
(15) Termaten, A. T.; Nijbacker, T.; Schakel, M.; Lutz, M.; Spek, A. L.;
Lammertsma, K. Organometallics 2002, 21, 3196.
(16) Melenkivitz, R.; Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002,
124, 3846.
(17) Mathey, F.; Huy, N. H. T.; Marinetti, A. HelV. Chim. Acta 2001, 84, 2938.
(18) Basuli, F.; Bailey, B. C.; Tomaszewski, J.; Huffman, J. C.; Mindiola, D.
J. J. Am. Chem. Soc. 2003, 125, 6052.
(19) Basuli, F.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Chem. Commun.
2003, 1554.
(20) See Supporting Information for complete experimental, spectral, and
crystallographic details.
(21) Significantly large P-H coupling constants have been reported: Brevard,
C.; Granger, P. Handbook of High-Resolution Multinuclear NMR; John
Wiley & Sons: New York, 1981.
(22) The TidP value is much shorter to Pauling’s predicted bond length of
2.288 Å for a double bond. Pauling, L. The Nature of the Chemical Bond,
3rd ed.; Cornell University Press: Ithaca, NY, 1960. A search in the CSD
reveals Ti-Phosphide bond lengths to be >2.5 Å.
(23) A similar fluxional process has been observed in four-coordinate scandium
species supported by the Nacnac- ligand used in the present study. Hayes,
P. G.; Piers, W. E.; Lee, L. W. M.; Knight, L. K.; Parvez, M.; Elsegood,
M. R. J.; Clegg, W. Organometallics 2001, 20, 2533.
In summary, we have shown that the four-coordinate titanium
neopentylidene can engage in R-deprotonation of phosphides to
yield reactive four-coordinate Ti(IV) phosphinidene species. The
titanium-phosphinidene complexes presented in this work are close
analogues of traditional phosphaalkenes, differing simply by the
presence of accessible d-orbitals.
JA036559R
9
J. AM. CHEM. SOC. VOL. 125, NO. 34, 2003 10171