Journal of the American Chemical Society
Communication
hexene. As also seen for the latter olefins, the tendency of the
substrate to isomerize was significant. Addition of a small amount
of either Cy3PO or water was found to suppress this usually
undesirable side reaction to some extent (entries 20 and 21).
Higher Z selectivity was obtained for 4-phenyl-1-butene than for
allylbenzene (91 vs 82% at low conversion).
In contrast, for allyl acetate and N-allylaniline, no isomer-
ization of the starting material was observed. The reactivities of
these substrates were lower than that of 1-octene but higher that
that of allyl-TMS. Under identical reaction conditions, the
reactivity was higher for allyl acetate and the Z content of the
product was higher for N-allylaniline.
Finally, we also tested 2-(allyloxy)ethanol (entry 27), which is
known to be a challenging substrate because of the presence of
the alcohol function. The formation of a small amount of the
homocoupling product (ca. 1%) with a Z selectivity of 73% was
observed after 2 h, along with a considerable fraction of
isomerized substrate (ca. 6%).19 Longer reaction times resulted
only in further isomerization of the starting material and Z−E
isomerization of the product. Although it appears that 2
decomposed after only about four turnovers, the observed
product formation and selectivity demonstrated at least some
degree of tolerance toward this functional group. To date, the
NHC−adamantyl chelate Ru catalysts are the only Z-selective
OM catalysts for which clear robustness toward alcohol
functionalities has been demonstrated.9
REFERENCES
■
(1) Schrock, R. R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang, D. C.;
Davis, W. M.; Park, L.; DiMare, M.; Schofield, M.; Anhaus, J.;
Walborsky, E.; Evitt, E.; Kruger, C.; Betz, P. Organometallics 1990, 9,
̈
2262. Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993,
115, 9858. Schrock, R. R. Tetrahedron 1999, 55, 8141. Trnka, T. M.;
Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. Schrodi, Y.; Pederson, R. L.
Aldrichimica Acta 2007, 40, 45.
(2) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565. Pederson, R. L.;
Fellows, I. M.; Ung, T. A.; Ishihara, H.; Hajela, S. P. Adv. Synth. Catal.
2002, 344, 728. Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2003, 42, 4592. Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003,
42, 1900. Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004, 248,
2365. Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243. Grubbs,
R. H. Adv. Synth. Catal. 2007, 349, 34. Thayer, A. M. Chem. Eng. News
2007, 85 (7), 37. Nolan, S. P.; Clavier, H. Chem. Soc. Rev. 2010, 39, 3305.
(3) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
(4) Furstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc.
̈
1999, 121, 11108. Furstner, A.; Rumbo, A. J. Org. Chem. 2000, 65, 2608.
̈
Furstner, A.; Seidel, G. J. Organomet. Chem. 2000, 606, 75. Gradillas, A.;
̈
Perez-Castells, J. Angew. Chem., Int. Ed. 2006, 45, 6086.
(5) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.;
Hoveyda, A. H. Nature 2008, 456, 933. Ibrahem, I.; Yu, M.; Schrock, R.
R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3844. Jiang, A. J.; Zhao,
Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16630.
Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Muller, P.; Hoveyda, A.
H. J. Am. Chem. Soc. 2011, 133, 20754.
̈
(6) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Muller, P.; Hoveyda, A. H.
J. Am. Chem. Soc. 2009, 131, 7962.
̈
In summary, we have developed a new, very active, and highly
Z-selective Ru-based OM catalyst (2) that offers Z selectivity for
metathesis homocouplings comparable to those of the best Z-
selective Ru-based catalysts reported to date. The new catalyst
was readily prepared from 1 in a one-step ligand-exchange
reaction, demonstrating for the first time that a strategy similar to
that used for Mo/W is also viable for Ru. Higher TONs (up to
2000 in the homocoupling of 1-octene) than reported to date for
other Z-selective catalysts can be achieved along with reasonably
high Z selectivity (>85%). The new catalyst is structurally closely
related to the parent catalyst 1 and derives from 1 many of its
attractive properties, such as its catalytic activity and general
robustness. However, the same is true for some of its less
desirable properties, such as its tendency to isomerize terminal
olefins and its reactivity toward internal olefins. Fortunately, 2
has a number of handles for structural modifications that could
potentially reduce such problems.
(7) Teo, P.; Grubbs, R. H. Organometallics 2010, 29, 6045.
(8) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525.
(9) Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem.
Soc. 2011, 133, 9686.
(10) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H. J.
Am. Chem. Soc. 2012, 134, 693.
(11) Occhipinti, G.; Bjørsvik, H.-R.; Jensen, V. R. J. Am. Chem. Soc.
2006, 128, 6952. Samojłowicz, C.; Bieniek, M.; Grela, K. Chem. Rev.
2009, 109, 3708.
(12) Jensen, V. R.; Occhipinti, G.; Hansen, F. Novel Olefin Metathesis
Catalysts. Int. Patent Appl. WO 2012032131, 2012.
(13) Chang, S.; Jones, L., II; Wang, C.; Henling, L. M.; Grubbs, R. H.
Organometallics 1998, 17, 3460. Allaert, B.; Dieltiens, N.; Ledoux, N.;
Vercaemst, C.; Van Der Voort, P.; Stevens, C. V.; Linden, A.; Verpoort,
F. J. Mol. Catal. A: Chem. 2006, 260, 221. Binder, J. B.; Guzei, I. A.;
Raines, R. T. Adv. Synth. Catal. 2007, 349, 395.
(14) Barbasiewicz, M.; Bieniek, M.; Michrowska, A.; Szadkowska, A.;
Makal, A.; Wozniak, K.; Grela, K. Adv. Synth. Catal. 2007, 349, 193.
́
(15) The presence of water reduces the catalyst reactivity but improves
the selectivity against OM. Only negligible decomposition of 2 was
observed when a solution of the crystallized complex was dissolved in
common (i.e., nondried, nondegassed) THF and exposed to air for ca. 1
h, but 2 decomposed rapidly when THF was replaced by a
noncoordinating olefinic substrate such as 1-octene (entry 8).
(16) Migration of the CC double bond of the target product and/or
the cross-metathesis reaction between the substrate and the 2-alkene
isomer was also detected (see p S25 in the SI).
(17) Alcaide, B.; Almendros, P.; Luna, A. Chem. Rev. 2009, 109, 3817.
(18) Forman, G. S.; McConnell, A. E.; Tooze, R. P.; van Rensburg, W.
J.; Meyer, W. H.; Kirk, M. M.; Dwyer, C. L.; Serfontein, D. W.
Organometallics 2005, 24, 4528. Courchay, F. C.; Sworen, J. C.;
Ghiviriga, I.; Abboud, K. A.; Wagener, K. B. Organometallics 2006, 25,
6074.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and additional data. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(19) The substrate was used as received.
The authors gratefully acknowledge financial support from The
Norwegian Research Council via the KOSK II (Grant 177322/
V30) and FORNY (Grant 203379) Programs and thank Dr.
Bjarte Holmelid for assistance with the HRMS-DART and GC-
HRMS analyses. F.R.H. gratefully acknowledges a Ph.D.
scholarship from the University of Bergen.
D
dx.doi.org/10.1021/ja311505v | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX