Communications
putte, J. D. Dutcher, Antibiot. Annu. 1955–1956, 560–561;
c) B. A. Steinberg, W. P. Jambor, L. O. Suydam, Antibiot.
Annu. 1955–1956, 562–565; structure determination: d) C. S.
Bond, M. P. Shaw, M. S. Alphey, W. N. Hunter, Acta Crystallogr.
Sect. D 2001, D57, 755–758; e) B. Anderson, D. C. Hodgkin,
M. A. Viswamitra, Nature 1970, 225, 233–235.
Table 1: Selected data for compounds 2 and 3.
2: Rf =0.32 (silica gel, CH2Cl2/MeOH, 9:1); [a]2D0 =ꢀ104.7 (c=0.20,
MeOH); IR (film): n˜max =3350, 2927, 2857, 1653, 1512, 1482, 1089,
1059 cmꢀ1; 1H NMR (600 MHz, CD3OD, 458C): d=8.52 (s, 1H), 8.19 (s,
1H), 8.08 (s, 1H), 7.44 (s, 1H), 6.63 (q, J=7.0 Hz, 1H), 6.47, (d,
J=1.5 Hz, 1H), 6.21 (d, J=1.0 Hz, 1H), 5.98 (br s, 1H), 5.85 (br s, 1H),
5.70 (d, J=1.5 Hz, 1H), 5.69 (d, J=1.0 Hz, 1H), 5.51 (s, 1H), 5.24 (br d,
J=17.0 Hz, 1H), 5.19 (t, J=9.2 Hz, 1H), 5.13 (br d, J=11.0 Hz, 1H),
5.09 (d, J=4.0 Hz, 1H), 4.47–4.41 (m, 3H), 4.19–4.15 (m, 1H), 4.13 (q,
J=7.0 Hz, 1H), 3.81 (br d, J=10.6 Hz, 1H), 3.70 (dd, J=9.7, 1.8 Hz,
1H), 3.48 (dd, J=8.8, 2.6 Hz, 1H), 2.85 (quintet, J=7.4 Hz, 1H), 2.62
(dt, J=8.3, 3.0 Hz, 1H), 1.82 (d, J=7.0 Hz, 3H), 1.32 (d, J=6.6 Hz,
3H), 1.25 (d, J=7.5 Hz, 3H), 1.24 (s, 3H), 1.21 (d, J=6.6 Hz, 3H),
1.05 ppm (d, J=6.1 Hz, 3H); 13C NMR (125 MHz, CD3OD, 458C):
d=175.4, 173.8, 171.8, 171.5, 169.9, 168.3, 164.6, 164.2, 163.9, 163.4,
161.2, 153.5, 152.2, 150.7, 149.6, 136.4, 136.1, 136.0, 134.4, 130.9, 125.6,
119.3, 117.9, 107.2, 106.1, 102.5, 88.0, 80.14, 76.9, 71.3, 71.0, 69.8, 69.5,
66.9, 59.4, 58.1, 57.5, 37.5, 36.9, 33.7, 30.8, 30.4, 20.9, 19.8, 19.4, 17.5,
14.5 ppm; HRMS (MALDI): calcd for C52H61N15O14S5 [M+H+]:
1280.3199; found: 1280.3184
[2] K. C. Nicolaou, M. Nevalainen, B. S. Safina, M. Zak, S. Bulat,
Angew. Chem. 2002, 114, 2021–2025; Angew. Chem. Int. Ed.
2002, 41, 1941–1945.
[3] K. C. Nicolaou, B. S. Safina, C. Funke, M. Zak, F. J. Zꢀcri,
Angew. Chem. 2002, 114, 2017–2020; Angew. Chem. Int. Ed.
2002, 41, 1937–1940.
[4] S. Higashibayashi, K. Hashimoto, M. Nakata, Tetrahedron Lett.
2002, 43, 105–110.
[5] J. M. Torres-Valencia, C. M. Cerda-Garcꢁa-Rojas, P. Joseph-
Nathan, Tetrahedron: Asymmetry 1998, 9, 757–764.
[6] S. Kobayashi, H. Ishitani, M. Ueno, Synlett 1997, 115–116.
[7] C. Cativiela, M. D. Dꢁaz-de-Villegas, J. A. Gꢂlvez, Tetrahedron
Lett. 1995, 36, 2859–2860.
[8] C. Holzapfel, G. J. Pettit, J. Org. Chem. 1985, 50, 2323–2327.
[9] a) P. T. Nyffeler, C.-H. Liang, K. M. Koeller, C.-H. Wong, J. Am.
Chem. Soc. 2002, 124, 10773–10778; b) P. B. Alper, S.-C. Hung,
C.-H. Wong, Tetrahedron Lett. 1996, 37, 6029–6032.
[10] J. C. Muir, G. Pattenden, R. M. Thomas, Synthesis 1998, 613–618.
[11] P. Lafargue, P. Guenot, J.-P. Lellouche, Synlett 1995, 171–172.
[12] F. Bravo, Y. Dꢁaz, S. Castillꢃn, Tetrahedron: Asymmetry 2001, 12,
1635–1643.
[13] N. M. Okeley, Y. Zhu, W. A. van der Donk, Org. Lett. 2000, 2,
3603–3606.
[14] Thiazolines are readily epimerizable substrates, see, for instance:
P. Wipf, P. C. Fritch, Tetrahedron Lett. 1994, 35, 5397–5400.
[15] Although transesterifications from methyl esters to tin esters
with Me3SnOH are known (for a review, see: O. A. Mascaretti,
R. L. E. Furlan, C. J. Salomon, E. G. Mata, Phosphorus Sulfur
Silicon Relat. Elem. 1999, 150–151, 89–97), only one application
of this method has been reported dealing with the cleavage of
benzyl esters: R. L. E. Furlan, E. G. Mata, O. A. Mascaretti, C.
Pena, M. P. Coba, Tetrahedron 1998, 54, 13023–13034.
[16] The corresponding Z-conjugated thiazole system of micrococ-
cin P1 was prepared by stereospecific elimination of the acti-
vated hydroxy group: a) F. Yokokawa, T. Shioiri, Tetrahedron
Lett. 2002, 43, 8679–8682; b) M. A. Ciufolini, Y.-C. Shen, Org.
Lett. 1999, 1, 1843–1846.
3: Rf =0.32 (silica gel, CH2Cl2/MeOH, 9:1); [a]2D0 =+98.5 (c=0.55,
MeOH); IR (film): n˜max =3375, 2913, 2853, 1658, 1643, 1449, 1249, 1061,
733 cmꢀ1; 1H NMR (600 MHz, CD3OD, 458C): d=8.51 (s, 1H), 8.21 (s,
1H), 8.12 (s, 1H), 7.34 (br s, 1H), 6.61 (q, J=7.0 Hz, 1H), 6.49, (d,
J=1.5 Hz, 1H), 6.20 (d, J=1.5 Hz, 1H), 5.86–5.78 (br s, 2H), 5.71–5.69
(m, 2H), 5.54 (br s, 1H), 5.23–5.19 (m, 3H), 5.09 (b, 1H). 4.48–4.42 (m,
3H), 4.38–4.32 (m, 3H), 4.19–4.16 (m, 1H), 3.90 (q, J=6.6 Hz, 1H),
3.65 (t, J=10.7 Hz, 1H), 3.45 (dd, J=8.8, 2.2 Hz, 1H), 3.21–3.18 (m,
1H), 2.59 (dt, J=8.3, 3.1 Hz, 1H), 1.80 (d, J=7.0 Hz, 3H), 1.39 (s, 3H),
1.33–1.31 (m, 6H), 1.24–1.22 ppm (m, 6H); 13C NMR (150 MHz,
CD3OD, 458C): d=175.3, 174.8, 174.0, 173.6, 172.0, 171.7, 170.9, 168.3,
164.6, 164.2, 163.7, 161.2, 152.2, 150.6, 149.9, 136.6, 136.4, 136.2, 130.8,
130.2, 119.1, 117.9, 107.3, 106.0, 87.8, 80.1, 76.8, 70.7, 69.8, 69.2, 66.8,
60.2, 59.1, 58.1, 58.0, 37.2, 37.0, 26.4, 20.7, 20.6, 19.5, 18.7, 17.6,
14.6 ppm; HRMS (MALDI): calcd for C52H61N15O14S5 [M+H+]:
1280.3199; found: 1280.3197
Within the described chemistry may lie clues for both the
successful total synthesis of thiostrepton (1) and the design of
bioactive analogues of this intriguing natural product.
[17] P. M. T. Ferreira, H. L. S. Maia, L. S. Monteiro, J. Sacramento, J.
Chem. Soc. Perkin Trans. 1 1999, 3697–3703.
Received: April 24, 2003 [Z51745]
[18] Minimum inhibitory concentration (MIC) assays were per-
formed with the following bacteria: methicillin-resistant Staph-
ylococcus aureus (MRSA) (ATCC 33591), vancomycin-resistant
Enterococcus faecium (VRE) (ATCC 700221), Pseudomonas
aeruginosa (PA) (27853), Escherichia coli (EC1) (ATCC
700336), Escherichia coli (EC2) (ATCC 29425). We thank
Dr. J. Fletcher and Dr. R. Ghadiri for these experiments.
Keywords: amino acids · antibiotics · macrocycles ·
natural products · thiazolines
.
[1] Isolation: a) J. F. Pagano, M. J. Weinstein, H. A. Stout, R.
Donovick, Antibiot. Annu. 1955–1956, 554–559; b) J. Vande-
3424
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 3418 – 3424