L. de Fays et al. / Tetrahedron Letters 44 (2003) 7197–7199
7199
Figure 1. Lowest energy conformation of 17.
the one occupied by the silyl substituent. However, the
dichlorocyclopropanation reaction under the classical
conditions (PTC or t-BuOK+CHCl3) did not take
place, probably as a result of the steric hindrance on
both faces of the double bond. It is interesting to note
that the dihydroxylation of the double bond was possi-
ble when the two oxygen atoms were not part of a
ring.3b
Scheme 3. Reagents and conditions: (a) N-methyl-1,2-oxido-
1,2,3,4-tetrahydroiso-quinoleine tetrafluoroborate (1 equiv.),
CH2Cl2, rt, 30 min; (b) Ethyl diazoacetate (1.2 equiv.), Cu-
(acac)2 (2 mol%), toluene, 90°C, 3 h; (c) K2OsO4·2H2O (2
mol%), NMO.H2O (1.7 equiv.), H2O/THF, rt, 48 h; (d)
Et3BnNCl (0.1 equiv.), NaOH 50%, CHCl3, rt, 15 h.
Acknowledgements
This work was supported by a MENRT fellowship
(LdF) and the Fonds National de la Recherche Scien-
tifique (J.-M.A.). We thank the ‘Conseil Re´gional
d’Aquitaine’ and the University of Bordeaux I for
support of our Institute.
References
1. Adam, J.-M.; Ghosez, L.; Houk, K. N. Angew. Chem., Int.
Ed. 1999, 38, 2728–2730.
2. (a) Fu¨rstner, A.; Langemann, K. J. Am. Chem. Soc. 1997,
119, 9130–9136; (b) Cossy, J.; Bauer, D.; Bellosta, V.
Tetrahedron Lett. 1999, 40, 4187–4188; (c) Scholl, M.;
Grubbs, R. H. Tetrahedron Lett. 1999, 40, 1425–1428; (d)
Ahmed, M.; Barrett, A. G. M.; Beall, J. C.; Braddock, D.
C.; Flack, K.; Gibson, V. C.; Procopriou, P. A. Tetra-
hedron 1999, 55, 3219–3232; (e) Mulzer, J.; Hanbauer, M.
Tetrahedron Lett. 2000, 41, 33–36; (f) Ramachandran, P.
V.; Reddy, M. R. V.; Brown, H. C. Tetrahedron Lett.
2000, 41, 583–586; (g) Felpin, F. X.; Girard, S.; Vo-Than,
G.; Robins, R. J.; Villieras, J.; Lebreton, J. J. Org. Chem.
2001, 66, 6305–6312; (h) Cossy, J.; Willis, C.; Bellosta, V.;
Bouzbouz, S. J. Org. Chem. 2002, 67, 1982–1992.
3. (a) Heo, J.-N.; Micaizio, G. C.; Roush, W. R. Org. Lett.
2003, 5, 1693–1696; (b) Heo, J.-N.; Holson, E. B.; Roush,
W. R. Org. Lett. 2003, 5, 1697–1700.
4. (a) Synthesis of 3-butenal: Crimmins, M. T.; Kirincich, S.
T.; Wells, A. J.; Choy, A. L. Synth. Commun. 1998, 28,
3675–3679; (b) Synthesis of 5-hexenal: Ikeda, T.; Yue, S.;
Hutchinson, C. R. J. Org. Chem. 1985, 50, 5193–5199.
5. Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-
Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc. 1992, 114,
2321–2336.
Scheme 4. Reagents and conditions: (a) n-BuLi (1.1 equiv.) in
THF, 20 min, rt then (R,R)-Cl-TiCpTADDOL (1.15 equiv.),
30 min, −78°C then 14 (1 equiv.), 3 h, −78°C, 40% aqueous
NH4F, 15 h, rt; (b) pyridine (3.5 equiv.), CH3COCl (2.5
equiv.), DCM, 4 h, rt; (c) Grubbs’catalyst 9 (8 mol%), boiling
DCM, 2 h.
proceeded indeed with high diastereoselectivity to give
the corresponding anti-b-hydroxyallylsilane 15. The
corresponding acetate 16 was subjected to RCM in the
presence of the second generation Grubbs’catalyst to
give 80% yield of the polysubstituted cylohexene 17 in
high enantiomeric purity (ee>95%).
1H NMR analysis and molecular modeling (Monte
Carlo exploration of conformational space with MM3
force field)6 of 17 suggested a half-chair conformation
with a pseudoaxial silyl substituent (Fig. 1). This should
allow an interaction (b-effect) with the olefinic bond
and favor electrophilic attack on the face opposite to
6. We thank Dr M. Laguerre for his help.