374
J . Org. Chem. 1998, 63, 374-376
Ta ble 1. Syn th esis of N-Ar yl Selen oa m id es 1 a n d th e
Str u ctu r e of N-Ar yl Selen oa ceta m id es in
Ra tio of E- a n d Z-Isom er sa
Solu tion s a n d in th e Solid Sta te
ratio of E:Z
yieldb ratio of E:Z
compd (%)
isomers of
Toshiaki Murai,* Naoko Niwa, Tatsuya Ezaka, and
Shinzi Kato*
entry
1
Ar
isomersc CH3C(S)NHArc,d
C6H5
1a
1b
59
31
71
61:39
65:35
64:36
23:77f
17:83g
14:86h
17:83i
49:51
48:52
36.5:63.5
42.5:57.5
44:56
Department of Chemistry, Faculty of Engineering,
Gifu University, Yanagido, Gifu 501-11, J apan
2e C6H4-CH3-4
3
4
5
6
7
C6H4-OCH3-4 1c
Received J uly 7, 1997
Synthesis and synthetic applications of selenium coun-
terparts of amides, i.e., selenoamides, have been widely
developed in recent years.1,2 On the contrary, little is
known about their structures. There has been several
reports on the X-ray molecular structure analyses of only
tertiary selenoamides3-5 and selenoformamides.6 No
structural studies have been reported on secondary
selenoamides except for one case7 despite their potential
importance related to those on well-known ordinary
amides8 and thioamides.9 Herein we report the structure
of N-aryl selenoacetamides in solutions and in the solid
state.
8j C6H4-Cl-4
1d
1e
19
34
30:70
28.5:71.5
9
C6H4-Br-4
a
Synthesis of 1 was carried out as follows: (trimethylsilyl)-
acetylene (2 mmol), n-BuLi (2 mmol), Se (2 mmol), CH3CO2H (2
mmol), arylamine (2 mmol), KF (2 mmol), CH3OH (5 mL), and
b
d
THF (5 mL). Isolated yield. c In CDCl3, ref 9c. The Ar group is
identical to that of 1 in each entry. e 4-CH3C6H4NH2‚HCl was used
instead of CH3CO2H and 4-CH3C6H4NH2. f In THF-d8. g In acetone-
d6. In CD3OD. i In CD3CN. j 4-ClC6H4NH2‚HCl was used instead
of CH3CO2H and 4-ClC6H4NH2.
h
selenium, acetic acid, and arylamines followed by the
reactions with potassium fluoride in moderate to good
yields (eq 1).2o The selenoamides 1 existed as a stereo-
isomeric mixture (eq 2). The yields of 1 and the ratios
N-Aryl selenoamides 1 were synthesized from the
reactions of (trimethylsilyl)acetylene, n-butyllithium,
(1) For reviews: (a) Ogawa, A.; Sonoda, N. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:
Oxford, U.K., 1991; Vol. 6, p 476. (b) Ogawa, A.; Sonoda, N. Rev.
Heteroatom Chem. 1994, 10, 43. (c) Dell, C. P. In Comprehensive
Organic Functional Group Transformations; Katritzky, A. R., Meth-
Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 5, p
565.
n
–
(2) For recent examples: (a) Ishihara, H.; Yoshimi, M.; Hara, N.;
Ando, H.; Kato, S. Bull. Chem. Soc. J pn. 1990, 63, 835. (b) Ishihara,
H.; Yoshimi, M.; Kato, S. Angew. Chem., Int. Ed. Engl. 1990, 29, 530.
(c) Sekiguchi, M.; Ogawa, A.; Fujiwara, S.; Ryu, I.; Kambe, N.; Sonoda,
N. Chem. Lett. 1990, 913. (d) Shimada, K.; Hikage, S.; Takeishi, Y.;
Takikawa, Y. Chem. Lett. 1990, 1403. (e) Sekiguchi, M.; Ogawa, A.;
Fujiwara, S.; Ryu, I.; Kambe, N.; Sonoda, N. Chem. Lett. 1990, 2053.
(f) Segi, M.; Kojima, A.; Nakajima, T.; Suga, S. Synlett 1991, 105. (g)
Sekiguchi, M.; Ogawa, A.; Kambe, N.; Sonoda, N. Chem. Lett. 1991,
315. (h) Okuma, K.; Ikari, K.; Ohta, H. Chem. Lett. 1992, 131. (i) Lai,
L.-L.; Reid, D. H. Synthesis 1993, 870. (j) Takikawa, Y.; Watanabe,
H.; Sasaki, R.; Shimada, K. Bull. Chem. Soc. J pn. 1994, 67, 876. (k)
Shimada, K.; Akimoto, S.; Itoh, H.; Nakamura, H.; Takikawa, Y. Chem.
Lett. 1994, 1743. (l) Takikawa, Y.; Yamaguchi, M.; Sasaki, T.; Ohnishi,
K.; Shimada, K. Chem. Lett. 1994, 2105. (m) Otten, P. A.; Gen, A. Recl.
Trav. Chim. Pays-Bas 1994, 113, 499. (n) An, D.-L.; Toyota, K.;
Yasunami, M.; Yoshifuji, M. Chem. Lett. 1995, 199. (o) Murai, T.;
Ezaka, T.; Niwa, N.; Kanda, T.; Kato, S. Synlett 1996, 865. (p) Murai,
T.; Ezaka, T.; Kanda, T.; Kato, S. J . Chem. Soc., Chem. Commun. 1996,
1809. (q) Murai, T.; Ezaka, T.; Ichimiya, T.; Kato, S. Synlett 1997, 775.
(3) For R,â-unsaturated selenoamides: (a) Fischer, H.; Tiriliomis,
A.; Gerbing, U.; Huber, B.; Mu¨ller, G. J . Chem. Soc., Chem. Commun.
1987, 559. (b) Fischer, H.; Gerbing, U.; Tiriliomis, A.; Mu¨ller, G.; Huber,
B.; Riede, J .; Hofmann, J .; Burger, P. Chem. Ber. 1988, 121, 2095.
(4) For diselenoamide: Nakayama, J .; Mizumura, A.; Akiyama, I.;
Nishio, T.; Iida, I. Chem. Lett. 1994, 77.
(5) For aromatic selenoamides: (a) Murai, T.; Mizutani, T.; Kanda,
T.; Kato, S. Heteroatom Chem. 1995, 6, 241. (b) Otten, P. A.; Gorter,
S.; Gen, A. Chem. Ber. 1997, 130, 49.
(6) Li, G. M.; Zingaro, R. A.; Segi, M.; Reibenspies, J . H.; Nakajima,
T. Organometallics 1997, 16, 756.
(7) The N-phenylselenoacetamide 1a has been reported to exist
predominantly as a Z-isomer on the basis of infrared spectroscopy,
see: Rae, I. D.; Wade, M. J . Int. J . Sulfur Chem. 1976, 8, 519.
(8) (a) Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereochemistry
of Organic Compounds; J ohn Wiley & Sons: New York, 1994; p 620.
(b) Saito, S.; Toriumi, Y.; Tomioka, N.; Itai, A. J . Org. Chem. 1995,
60, 4715. (c) Manea, V. P.; Wilson, K. J .; Cable, J . R. J . Am. Chem.
Soc. 1997, 119, 2033 and references therein.
of two isomers are listed in Table 1. The structures of
major isomers were determined by the comparison of the
chemical shifts of 1 with those of N-aryl thioamides.10
In the 1H NMR spectra the signals corresponding to N-H
proton of E-isomers were observed in the lower fields
than those of Z-isomers. On the other hand, the signals
due to a methyl group attached to the selenocarbonyl
group in E-isomers were upfield of those in Z-isomers.
The ratios of the isomers were determined by the relative
intensities of these methyl signals. N-Aryl selenoamides
1 were found to exist predominantly as Z-isomers in
THF-d8, acetone-d6, CD3OD, and CD3CN. As for amides,
secondary N-aryl amides have been reported to exist only
as Z-isomers.11 The predominance of Z-isomers in thio-
amides has been explained by the steric repulsion
between ortho-protons of the aromatic ring and an alkyl
group at the position R to the thiocarbonyl group in
E-isomers.10 A similar steric repulsion clearly exists in
selenoamides, and this seemed to explain the results of
entries 4-7 in Table 1. However, this does not explain
(9) (a) Walter, W.; Voss, J . In The Chemistry of Amides; Patai, S.,
Ed.; Interscience Publishers: London, 1970; p 383. (b) Duus, F. In
Comprehensive Organic Chemistry; Barton, D., Ollis, W. D., Eds.;
Pergamon Press: Oxford, U.K., 1979; Vol. 3, p 440. (c) Walter, W.;
Kubersky, H. P. Spectrochim. Acta 1970, 26A, 1155.
(10) Katritzky, A. R.; Moutou, J .-L.; Yang, Z. Synthesis 1995, 1497.
(11) (a) Itai, A.; Toriumi, Y.; Tomioka, N.; Kagechika, H.; Azumaya,
I.; Shudo, K. Tetrahedron Lett. 1989, 30, 6177. (b) Toriumi, Y.; Kasuya,
A.; Itai, A. J . Org. Chem. 1990, 55, 259.
S0022-3263(97)01222-X CCC: $15.00 © 1998 American Chemical Society
Published on Web 01/07/1998