1150
S. H. Kang et al.
LETTER
HO
OH
PPh3Br
Br
a,b
c,d
4
c,d
a,b
H2NOC HNTs
OH
12
OCH2OMe
OH
OCH2OMe
TBSO
O
TBSO
7
8
6
H
H
N
I
HO
C
NH
OTBS
OTBS
f
e
O
Ts
H
OCH2OMe
t-Boc NH Ts
N
N
O
OP
13
14
Ts
CCl3
P = H
10
TBSO
TBSO
9
g
H
H
H
P = COCMe3
5
e
ref 10b
CO2H
NH OTBS
NH
HO
HO
O
O
h
15
3
+
NC HNTs OCOCMe3
OCOCMe3
TsNH CN
Scheme 3 Reagents and conditions: (a) DIBAL, CH2Cl2, –78 °C,
91%; (b) 30% H2O2, EtOH, NH4OH, r.t., 89%; (c) TBSCl, imidazole,
DMF, r.t., 87%; (d) t-Boc2O, DMAP, Et3N, CH2Cl2, r.t., 90%; (e) Na-
naphthalide, DME, –78 °C, 95%.
4
11
Scheme 2 Reagents and conditions: (a) MeOCH2Cl, i-Pr2NEt,
CH2Cl2, r.t., 91%; (b) PPh3, K2CO3, MeCN, 90 °C, 86%; (c) n-BuLi,
HMPA, THF, –15°C, then (R)-2-t-butyldimethylsilyloxypropanal,
–78 °C to –15 °C, 90%; (d) TBAF, THF, r.t., 94% for cis-olefin;
(e) Cl3CCN, DBU, MeCN, 0 °C, then IBr, DBU, CH2Cl2, MeCN, –78
°C to –50 °C, 91%; (f) 6 N HCl, MeOH, r.t., then NaHCO3, MeOH,
r.t., then TsCl, r.t., 95%; (g) Me3CCOCl, DMAP, Et3N, CH2Cl2, 0 °C,
94%; (h) LiCN, HMPA, r.t., 91%.
dine ring-opening reaction and the tandem intramolecular
cyclization.
Acknowledgment
This work was supported by CMDS and the Brain Korea 21 Project.
mixture of the desired b-amino cyanide 4 and its dia-
stereomer 11 in 91% combined yield.
References
(1) (a) Albers-Schönberg, G.; Arison, B. H.; Hensens, O. D.;
Hirshfield, J.; Hoogsteen, K.; Kaczka, E. A.; Rhodes, R. E.;
Kahan, J. S.; Kahan, F. M.; Ratcliffe, R. W.; Walton, E.;
Ruswinkle, L. J.; Morin, R. B.; Christensen, B. G. J. Am.
Chem. Soc. 1978, 100, 6491. (b) Kahan, J. S.; Kahan, F. M.;
Goegelman, R.; Currie, S. A.; Jackson, M.; Stapley, E. O.;
Miller, T. W.; Miller, A. K.; Hendlin, D.; Mochales, S.;
Hernandez, S.; Woodruff, H. B.; Birnbaum, J. J. Antibiot.
1979, 32, 1.
b-Lactam ring formation was regarded as the crucial step
in the next sequence of our synthesis. Our initial effort for
the transformation focused on direct or indirect hydrolysis
of the cyanide derivatives into carboxylic acids to prove
abortive. Alternatively, the intramolecular cyclization
was conceived to be attained using amide instead of car-
boxylic acid. Accordingly, the trimethylacetyl group of 4
was removed with DIBAL and then its cyanide group was
hydrolyzed into amide 12 in 81% overall yield using hy-
drogen peroxide in ethanolic ammonium hydroxide
(Scheme 3).7 After bissilylation of 12 with TBSCl in 87%
yield, the resulting amide was subjected to mesyl chloride,
tosyl chloride, triflic anhydride, benzyloxycarbonyl chlo-
ride, i-butoxycarbonyl chloride and di-t-butyl dicarbon-
ate. Only di-t-butyl dicarbonate turned out to be
successfully applied for the cyclization. Treatment of the
bissilylated amide with di-t-butyl dicarbonate in the pres-
ence of DMAP and Et3N gave the desired azetidinone 14
in 90% yield evidently via t-butoxycarbonylamide 13.
(2) Shih, D. H.; Baker, F.; Cama, L.; Christensen, B. G.
Heterocycles 1984, 21, 29.
(3) (a) Kang, S. H.; Lee, H. S. Tetrahedron Lett. 1995, 36,
6713. (b) Berks, A. H. Tetrahedron 1996, 52, 331; and
references cited therein. (c) Kondo, K.; Seki, M.; Kuroda,
T.; Yamanaka, T.; Iwasaki, T. J. Org. Chem. 1997, 62,
2877. (d) Oh, C.-Y.; Ham, W.-H. Chem. Commun. 1999,
2365.
(4) Kang, S. H.; Kim, G. T. Tetrahedron Lett. 1995, 36, 5049.
(5) Kwon, H.; Lee, M.; Lee, S.; Hwang, T. Bull. Kor. Chem.
Soc. 1997, 18, 463.
(6) Bongini, A.; Cardillo, G.; Orena, M.; Sandri, S.; Tomasini,
C. J. Org. Chem. 1986, 51, 4905.
(7) Groziak, M. D.; Chern, J.; Townsend, L. B. J. Org. Chem.
1986, 51, 1065.
(8) Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 619.
(9) Tsukada, N.; Shimada, T.; Gyoung, Y. S.; Asao, N.;
Yamamoto, Y. J. Org. Chem. 1995, 60, 143.
(10) (a) Kawabata, T.; Kimura, Y.; Ito, Y.; Terashima, S.; Sasaki,
A.; Sunagawa, M. Tetrahedron 1988, 44, 2149. (b) Kaga,
H.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1989, 30,
113.
Finally, 14 was desulfonylated by sodium naphthalide
15
in DME8 uneventfully to produce b-lactam 159 ([a]D
=
–8.32, c 1.00, CHCl3) in 95% yield, which was converted
into a known key intermediate 3 to 1b-methylcarbapenem
according to Ohno’s procedure.10
In summary, we have established a stereoselective syn-
thesis of azetidinone 3 as a key intermediate to 2 via the
diastereoselective iodoamidation, the regioselective aziri-
Synlett 2003, No. 8, 1149–1150 ISSN 1234-567-89 © Thieme Stuttgart · New York