ARTICLES
2000 (Thermo Scientific). Protein lysates (∼100 μg) were loaded on a 4–20%
Mini-PROTEAN TGX Stain-Free Gel (BioRad), resolved by SDS-PAGE
electrophoresis and transferred onto a nitrocellulose membrane (Amersham).
Proteins were probed with the following antibodies: anti-β-actin (ab8226, Abcam),
anti-H2AX (PA1-14198, Thermo Scientific), anti-γH2AX (#2577, Cell Signaling),
anti-p21 (#2947, Cell Signaling), anti-p53 (#2524, Cell Signaling), anti-p-p53
(#9284, Cell Signaling), anti-p62 (610,833, BD Transduction Laboratories), anti-LC3
(#2775, Cell Signaling), anti-Bid (#2002, Cell Signaling) and anti-Caspase 3 (#9665,
Cell Signaling) and were diluted 1/1,000 in 5% BSA, 0.1% Tween-20/TBS. The
secondary antibodies were anti-rabbit HRP (A120-108P, Bethyl), anti-mouse HRP
(A90-116P) and anti-donkey HRP (A140-107P, Bethyl). Antigens were detected
by electrochemiluminescence (Amersham). Imaging was performed using a
ChemiDoc XRS+ System.
24. Eade, S. J. et al. Biomimetic synthesis of pyrone-derived natural products:
exploring chemical pathways from a unique polyketide precursor. J. Org. Chem.
73, 4830–4839 (2008).
25. Heinzman, S. W. & Grunwell, J. R. Regiospecific synthesis of bromojuglone
derivatives. Tetrahedron Lett. 21, 4305–4308 (1980).
26. Carreño, M. C., Urbano, A. & Di Vitta, C. Enantioselective Diels–Alder
approach to C-3-oxygenated angucyclinones from (SS)-2-(p-tolylsulfinyl)-
1,4-naphthoquinone. Chem. Eur. J. 6, 906–913 (2000).
27. Brimacombe, J. S., Hanna, R., Saeed, M. S. & Tucker, L. C. N. Convenient
syntheses of L-digitoxose, L-cymarose, and L-ristosamine. J. Chem. Soc.
2583–2587 (1982).
28. Greven, R., Jütten, P. & Scharf, H.-D. A new stereoselective route to branched-
chain nitro and amino sugars: synthesis of both enantiomers of decilonitrose and
avidinosamine. J. Org. Chem. 58, 3742–3747 (1993).
29. Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural
products without using protecting groups. Nature 446, 404–408 (2007).
30. Klemer, A. & Rodemeyer, G. Simple synthesis of methyl 4,6-ortho-benzylidene-
2-desoxy-alpha-D-erythro-hexopyranosid-3-ulose. Chem. Ber. 107,
2612–2614 (1974).
31. Wolfe, J. P., Wagaw, S., Marcoux, J.-F. & Buchwald, S. L. Rational development of
practical catalysts for aromatic carbon–nitrogen bond formation. Acc. Chem. Res.
31, 805–818 (1998).
32. Sambiagio, C., Marsden, S. P., Blacker, A. J. & McGowan, P. C. Copper catalysed
Ullmann type chemistry: from mechanistic aspects to modern development.
Chem. Soc. Rev. 43, 3525–3550 (2014).
33. Larrieu, D., Britton, S., Demir, M., Rodriguez, R. & Jackson, S. P. Chemical
inhibition of NAT10 corrects defects of laminopathic cells. Science 344, 527–
532 (2014).
34. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis,
and its inhibitor ICAD. Nature 391, 43–50 (1998).
35. Eskelinen, E.-L., Tanaka, Y. & Saftig, P. At the acidic edge: emerging functions
for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145 (2003).
36. Huynh, K. K. et al. LAMP proteins are required for fusion of lysosomes with
phagosomes. EMBO J. 26, 313–324 (2007).
37. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for
monitoring autophagy. Autophagy 8, 445–544 (2012).
38. Kågedal, K., Zhao, M., Svensson, I. & Brunk, U. T. Sphingosine-induced
apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343 (2001).
39. Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death.
Oncogene 27, 6434–6451 (2008).
40. Galluzzi, L., Bravo-San Pedro, J. M. & Kroemer, G. Organelle-specific initiation
of cell death. Nature Cell Biol. 16, 728–736 (2014).
41. Li, H., Zhu, H., Xu, C.-J. & Yuan, J. Cleavage of BID by caspase 8 mediates
the mitochondrial damage in the Fas pathway of apoptosis. Cell 94,
491–501 (1998).
42. Chipuk, J. E., Bouchier-Hayes, L. & Green, D. R. Mitochondrial outer membrane
permeabilization during apoptosis: the innocent bystander scenario. Cell Death
Differ. 13, 1396–1402 (2006).
43. Hamacher-Brady, A. et al. Artesunate activates mitochondrial apoptosis in
breast cancer cells via iron-catalyzed lysosomal reactive oxygen species
production. J. Biol. Chem. 286, 6587–6601 (2011).
44. Ziegler, S., Pries, V., Hedberg, C. & Waldmann, H. Target identification for small
bioactive molecules: finding the needle in the haystack. Angew. Chem. Int. Ed.
52, 2744–2792 (2013).
45. Li, Y. et al. Amplification of LAPTM4B and YWHAZ contributes to
chemotherapy resistance and recurrence of breast cancer. Nature Med. 16,
214–218 (2010).
46. Kreuzaler, P. & Watson, C. J. Killing a cancer: what are the alternatives? Nature
Rev. Cancer 12, 411–424 (2012).
47. Shiraishi, N., Akiyama, S.-I., Kobayashi, M. & Kuwano, M. Lysosomotropic
agents reverse multiple drug resistance in human cancer cells. Cancer Lett. 30,
251–259 (1986).
Received 31 December 2014; accepted 10 June 2015;
published online 20 July 2015
References
1. Kharel, M. K. et al. Angucyclines: biosynthesis, mode-of-action, new natural
products, and synthesis. Nat. Prod. Rep. 29, 264–325 (2012).
2. Martin, G. D. A. et al. Marmycins A and B, cytotoxic pentacyclic C-glycosides
from a marine sediment-derived actinomycete related to the genus Streptomyces.
J. Nat. Prod. 70, 1406–1409 (2007).
3. Cottreau, K. M. et al. Diverse DNA-cleaving capacities of the jadomycins
through precursor-directed biosynthesis. Org. Lett. 12, 1172–1175 (2010).
4. Sun, D., Hansen, M. & Hurley, L. Molecular basis for the DNA sequence
specificity of the pluramycins. A novel mechanism involving groove
interactions transmitted through the helix via intercalation to achieve
sequence selectivity at the covalent bonding step. J. Am. Chem. Soc. 117,
2430–2440 (1995).
5. Hansen, M., Yun, S. & Hurley, L. Hedamycin intercalates the DNA helix and,
through carbohydrate-mediated recognition in the minor groove, directs N7-
alkylation of guanine in the major groove in a sequence-specific manner. Chem.
Biol. 2, 229–240 (1995).
6. Singal, P. K. & Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J.
Med. 339, 900–905 (1998).
7. Yang, F., Kemp, C. J. & Henikoff, S. Doxorubicin enhances nucleosome turnover
around promoters. Curr. Biol. 23, 782–787 (2013).
8. Pang, B. et al. Drug-induced histone eviction from open chromatin contributes
to the chemotherapeutic effects of doxorubicin. Nature Commun. 4,
1908 (2013).
9. Pigram, W. J., Fuller, W. & Hamilton, L. D. Stereochemistry of intercalation:
interaction of daunomycin with DNA. Nature 235, 17–19 (1972).
10. Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nature
Rev. Cancer 9, 338–350 (2009).
11. Korynevska, A. et al. Mechanisms underlying the anticancer activities of the
angucycline landomycin E. Biochem. Pharmacol. 74, 1713–1726 (2007).
12. Müller, S., Kumari, S., Rodriguez, R. & Balasubramanian, S. Small-molecule-
mediated G-quadruplex isolation from human cells. Nature Chem. 2,
1095–1098 (2010).
13. Koirala, D. et al. A single-molecule platform for investigation of interactions
between G-quadruplexes and small-molecule ligands. Nature Chem. 3,
782–787 (2011).
14. Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative
DNA structures in human genes. Nature Chem. Biol. 8, 301–310 (2012).
15. Rodriguez, R. & Miller, K. M. Unravelling the genomic targets of small
molecules using high-throughput sequencing. Nature Rev. Genet. 77,
5439–5444 (2012).
16. Yadav, J. S. et al. InBr3-catalyzed cyclization of glycals with aryl amines. Angew.
Chem. Int. Ed. 42, 5198–5201 (2003).
17. Ding, C. et al. Synthesis study on marmycin A: preparation of the C3′-desmethyl
analogues. J. Org. Chem. 74, 6111–6119 (2009).
18. Maugel, N. & Snider, B. B. Efficient synthesis of the tetracyclic aminoquinone
moiety of marmycin A. Org. Lett. 11, 4926–4929 (2009).
19. Bourcet, E., Bröhmer, M. C., Nieger, M. & Bräse, S. Synthetic studies towards
marmycins A and B: development of the vinylogous aldol–aza-Michael domino
reaction. Org. Biomol. Chem. 9, 3136–3138 (2011).
48. Zamora, J. M. & Beck, W. T. Chloroquine enhancement of anticancer drug
cytotoxicity in multiple drug resistant human leukemic cells. Biochem.
Pharmacol. 35, 4303–4310 (1986).
49. Vezmar, M. & Georges, E. Reversal of MRP-mediated doxorubicin resistance
with quinoline-based drugs. Biochem. Pharmacol. 59, 1245–1252 (2000).
50. Savarino, A., Lucia, M. B., Giordano, F. & Cauda, R. Risks and benefits of
chloroquine use in anticancer strategies. Lancet Oncol. 7, 792–793 (2006).
20. Mendoza, A., Ishihara, Y. & Baran, P. S. Scalable enantioselective total synthesis
of taxanes. Nature Chem. 4, 21–25 (2012).
21. Rodriguez, R., Chapelon, A.-S., Ollivier, C. & Santelli, M. Stereoselective
synthesis of CD-ring precursors of vitamin D derivatives. Tetrahedron 65,
7001–7015 (2009).
22. Rodriguez, R., Adlington, R. M., Moses, J. E., Cowley, A. & Baldwin, J. E. A new
and efficient method for o-quinone methide intermediate generation:
application to the biomimetic synthesis of ( )-alboatrin. Org. Lett. 6,
3617–3619 (2004).
23. Rodriguez, R. et al. Total synthesis of cyercene A and the biomimetic synthesis
of ( )-9,10-deoxytridachione and ( )-ocellapyrone A. Tetrahedron 63,
4500–4509 (2007).
Acknowledgements
The authors thank the CNRS for funding, and the Imagif Cell Biology Unit, J.-F. Gallard
and F. Blanchard for assistance with cell imaging, NMR spectroscopy and X-ray
crystallography, respectively. R.R. thanks J.A. Yeoman, S. Müller, J.E. Moses, S.L. Buchwald,
L. Johannes, M. Mehrpour and members of R.R.’s laboratory for discussions and
proofreading of this manuscript. Research in R.R.’s laboratory is supported by the
European Research Council (grant no. 647973), the Fondation pour la Recherche Médicale
(grant no. AJE20141031486), the Emergence Ville de Paris Program and the Ligue
Nationale Contre le Cancer.
7
© 2015 Macmillan Publishers Limited. All rights reserved