COMMUNICATIONS
molecular formula in square parentheses corresponds to negatively
charged ion).
Taking all of the spectrometric data into account a number
of new compounds (7, 8) can be identified with a high degree
of confidence. For all of the identified compounds, which
include the already described products (4 ± 6), new analytical
data could be obtained, that allows them to be included into a
reaction scheme of the a-pinene ozonolysis that is based
purely on identified compounds. In addition to these com-
pounds, a structural suggestion can be made for an additional
product 9 based on MS and IR data. This structure is
supported by the ester channel mechanism suggested by
Atkinson[11] to be one of the leading mechanisms for the
formation of terpene reaction products (Scheme 2).
cis-Pinonic acid (4): NMR: Ha1 2.990 (dd, 1H); Ha4, Hc1, Hc2 2.187 ± 2.348
(m, 3H); Hd 2.032 (s, 3H);[12] Ha2, Ha3 1.782 ± 1.905 (m, 2H); Hb1 1.266 (s,
3H); Hb2 0.797 (s, 3H); MS: 183.1027330 [C10H15O3] (0.33 ppm); IR: nÄ
1
2957, 1707, 1369, 1226, 1184, 948 cm
.
cis-Pinic acid (5): NMR: Ha1 2.769 (dd, 1H); Ha4, Hc1, Hc2 2.246 ± 2.401
(m, 3H); Ha3 2.018 ± 2.069 (m, 1H);[12] Ha2 1.794 (q, 1H); Hb1 1.167 (s, 3H);
Hb2 0.913 (s, 3H). MS: 185.0819860 [C9H13O4] (0.29 ppm); IR: nÄ 2961,
1
2657, 1713, 1419, 1246, 935, 740 cm
.
Hydroxy pinonic acid (6): NMR: Ha1 2.994 (dd, 1H); Ha4, Hc1, Hc2 2.182 ±
2.370 (m, 3H); Hd1, Hd2 4.093 ± 4.230 (dd, 2H); Ha2 1.891 (m, 1H); Ha3
possibly obscured; Hb1 1.204 (s, 3H); Hb2 0.787 (s, 3H); MS: 199.0976910
[C10H15O4] (0.54 ppm).
cis-nor-Pinonic acid (7): Ha1 3.100 (dd, 1H); Ha4 2.886 (dd, 1H); Ha2 2.352
(q, 1H); Hd 2.090 (s, 3H) (partly obscured by signal of acetonitrile); Ha3
1.852 (qd, 1H); Hb1 1.411 (s, 3H); Hb2 0.868 (s, 3H). MS: 169.0870480
[C9H13O3] (0.56 ppm).
cis-Pinornalic acid (8): NMR: Hd 9.631 (s, 1H); Ha1 2.817 (t, 1H); Hc1
2.575 (dd, 1H); Hc2 2.476 (dd, 1H); Ha4 2.408 (m, 1H); Ha2 possibly
obscured; Ha3 1.810 (dd, 1H); Hb1 1.193 (s, 3H); Hb2 0.917 (s, 3H). MS:
169.0870480 [C9H13O3] (0.56 ppm).
[Hydroxy acetic acid-((2,2-dimethyl)-cyclo-butyl)-ester] acetic acid (9):
MS: 215.0925990 [C10H15O5] (0.46 ppm); IR: nÄ 2976, 1742, 1392, 1275,
1
1130, 961 cm
.
Received: June 5, 2001 [Z17219]
[1] F. W. Went, Nature 1960, 187, 641.
[2] a) M. O. Andreae, P. J. Crutzen, Science 1997, 276, 1052; b) A. R.
Ravishankara, Science 1997, 276, 1058.
[3] a) T. Hoffmann, J. R. Odum, F. Bowman, D. Collins, D. Klockow,
R. C. Flagan, J. Seinfeld, J. Atmos. Chem. 1997, 26, 189; b) S. Koch, R.
Winterhalter, E. Uherek, A. Kolloff, P. Neeb, G. K. Moortgat, Atmos.
Environ. 2000, 34, 4031.
[4] a) R. Atkinson, S. M. Aschmann, J. Arey, B. Shorees, J. Geophys. Res.
1992, 97, 6065; b) B. R. Larsen, D. Di Bella, M. Glasius, R. Winter-
halter, N. R. Jensen, J. Hjorth, J. Atmos. Chem. 2001, 38, 231; c) M.
Hallquist, I. Wangberg, E. Ljungstrom, I. Barnes, K. H. Becker,
Environ. Sci. Technol. 1999, 33, 553.
Scheme 2. Proposed reaction scheme leading to the ozonolysis product 9
from 3b; in accordance to Atkinson.[11]
[5] a) R. Criegee, Angew. Chem. 1975, 87, 765; Angew. Chem. Int. Ed.
Engl. 1975, 14, 745; b) W. Adam, M. Braun, A. Griesbeck, V. Lucchini,
E. Staab, B. Will, J. Am. Chem. Soc. 1989, 111, 203; c) E. E. Royals,
L. L. Harrell, Jr., J. Am. Chem. Soc. 1955, 77, 3405.
[6] a) J. Yu, D. R. Crocker III, R. J. Griffin, R. C. Flagan, J. H. Seinfeld, J.
Atmos. Chem. 1999, 34, 207; b) S. Hatakeyama, K. Izumi, T.
Fukuyama, H. Akimoto, J. Geophys. Res. 1989, 94, 13013; c) Y.
Yokouchi, Y. Ambe, Atmos. Environ. 1985, 19, 1271; d) U. Kück-
elmann, B. Warscheid, T. Hoffmann, Anal. Chem. 2000, 72, 1905.
[7] a) M. E. Jenkin, D. E. Shallcross, J. N. Harvey, Atmos. Environ. 2000,
34, 2837; b) S. Koch, R. Winterhalter, A. Kolloff, E. Uherek, P. Neeb,
G. Moortgat in Proceedings of the EC/EUROTRAC-2 Joint Workshop
(Aachen, Germany) 1999, p. 300.
The results show that an analytical approach to the
investigation of atmospheric relevant organic aerosols by
coupling liquid chromatography with mass spectrometry,
NMR spectroscopy, and infrared spectroscopy allows valuable
information to be obtained about the structure of the reaction
products. Even with high-resolution mass spectrometry it is
not possible to differentiate between 7 and 8 which have the
same composition (empirical formula). But with the structural
information from both NMR and MS/MS a characterization is
possible.
With this instrumentation we have for the first time tools at
hand that are able to give enough information about such a
complex and difficult problem as terpene gas-phase oxidation.
While NMR spectroscopy allows cis and trans isomers to be
distinguished, in addition the structural information from
high-resolution and highly accurate mass determination make
it possible to address with precision the formulas of the
unknown products.
[8] a) G. Schlotterbeck, L.-H. Tseng, H. Händel, U. Braumann, K. Albert,
Anal. Chem. 1997, 69, 1421; b) M. Godejohann, M. Astratov, A. Preiû,
K. Levsen, C. Mügge, Anal. Chem. 1998, 70, 4104; c) U. G. Sidelmann,
D. Gavaghan, H. A. J. Carless, M. Spraul, M. Hofmann, J. C. Lindon,
I. D. Wilson, J. K. Nicholson, Anal. Chem. 1995, 67, 4441.
[9] J. Geiger, E. H. Korte, W. Schrader, J. Chromatogr. A 2001, 922, 99.
[10] I. G. Kavouras, N. Mihalopoulos, E. G. Stephanou, Nature 1998, 395,
683.
[11] R. Atkinson, J. Phys. Chem. Ref. Data 1997, 26, 215.
[12] Obscured by signal of acetonitrile, determination with selective total
correlation spectroscopy (TOCSY).
Experimental Section
Analytical data: NMR: (proton signals are referenced to the acetonitrile
(d 1.93); MS: accurate mass determination (m/z: accuracy in parentheses;
Angew. Chem. Int. Ed. 2001, 40, No. 21
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4021-4001 $ 17.50+.50/0
4001