6870
H. Nagano et al. / Tetrahedron Letters 44 (2003) 6867–6870
to give 10a–10c, 11a and 11c, respectively, following the
procedures reported by Delongchamps and co-
workers15 (Scheme 3). The reaction of acetal 8a having
an axial methoxy group did not proceed as predicted
from the literature.
J.; Hasskerl, T.; Houk, K. N.; Hu¨ter, O.; Zipse, H. J.
Am. Chem. Soc. 1992, 114, 4067–4079.
7. Recently radical haloacetal cyclizations (Ueno–Stork
reaction) controlled by the acetal center have been
reported: (a) Villar, F.; Kolly-Kovac, T.; Equey, O.
Renaud, P. Chem. Eur. J. 2003, 9, 1566–1577; (b)
Corminboeuf, O.; Renaud, P.; Schiesser, C. H. Chem.
Eur. J. 2003, 9, 1578–1584.
8. (a) Downham, R.; Edwards, P. J.; Entwistle, D. A.;
Hughes, A. B.; Kim, K. S.; Ley, S. V. Tetrahedron:
Asymmetry 1995, 6, 2403–2440; (b) Bosci, A.; Chiappe,
C.; De Rubertis, A.; Ruasse, M. F. J. Org. Chem. 2000,
65, 8470–8477.
In summary, we reported the stereoselectivity in the
formation and radical reduction of cyclic bromoacetals
4 and 5. The oxidative ring cleavage of the resulting
acetals 6–8 gave the acyclic d- and o-hydroxy-a-methyl-
carboxylic acid esters 10 and 11. The overall yields of
10a–10c from 3a–3c were 48, 37 and 14%, respectively.
9. The analysis of low energy conformers of the intermedi-
ate bromonium ions in the bromoacetalization of enol
ether (E)-3b calculated by the use of CONFLEX (Ref.
10) and subsequent PM3 programs shows that the lowest
energy conformer yielding the minor bromoacetal 5b is
2.5 kcal mol−1 higher in energy than the global minimum
energy conformer of the bromonium ion yielding the
major bromoacetal 4b. The calculations for the minor
(Z)-3b suggest the preferential formation of 4b.
10. (a) Goto, H.; Osawa, E. J. Am. Chem. Soc. 1989, 111,
8950–8951; (b) Goto, H.; Osawa, E. J. Chem. Soc.,
Perkin Trans. 2 1993, 187–198.
References
1. For reviews and books, see: (a) Smadja, W. Synlett 1994,
1–26; (b) Porter, N. A.; Giese B.; Curran, D. P. Acc.
Chem. Res. 1991, 24, 296–304; (c) RajanBabu, T. V. Acc.
Chem. Res. 1991, 24, 139–145; (d) Renaud, P.; Sibi, M. P.
Radicals in Organic Synthesis; VCH: Weinheim, 2001;
Vols. 1–2; (e) Curran, D. P.; Porter, N. A.; Giese, B.
Stereochemistry of Radical Reactions; VCH: Weinheim,
1996.
2. For reviews see: (a) Sibi, M. P.; Porter, N. A. Acc. Chem.
Res. 1999, 32, 163–171; (b) Renaud, P.; Gerster M.
Angew. Chem., Int. Ed. 1998, 37, 2562–2579; (c) Guindon,
Y.; Gue´rin, B.; Rancourt, J.; Chabot, C.; Makintosh, N.;
Ogilvie, W. W. Pure Appl. Chem. 1996, 68, 89–96. For
recent examples, see: (d) Iserloh, U.; Curran, D. P.;
Kanemasa, S. Tetrahedron: Asymmetry 1999, 10, 2417–
2428; (e) Watanabe, Y.; Mase, N.; Furue, R.; Toru, T.
Tetrahedron Lett. 2001, 42, 2981–2984; (f) Halland, N.;
Jorgensen, K. A. J. Chem. Soc., Perkin Trans. 1, 2001,
1290–1295.
3. (a) Nagano, H.; Toi, S.; Yajima, T. Synlett 1999, 53–54;
(b) Nagano, H.; Hirasawa, T.; Yajima, T. Synlett 2000,
1073–1075; (c) Nagano, H.; Matsuda, M.; Yajima, T. J.
Chem. Soc., Perkin Trans. 1 2001, 174–182; (d) Nagano,
H.; Toi, S.; Matsuda, M.; Hirasawa, T.; Hirasawa, S.;
Yajima, T. J. Chem. Soc., Perkin Trans. 1 2002, 2525–
2538; (e) Nagano, H.; Ohkouchi, H.; Yajima, T. Tetra-
hedron 2003, 59, 3649–3663.
11. (a) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981,
14, 95–102; (b) Casadei, M. A.; Galli, C.; Mandolini, L.
J. Am. Chem. Soc. 1984, 106, 1051–1056.
12. Macrocyclic iodoacetals have been prepared in good
yields under high dilution conditions: Nagano, H.; Tada,
A.; Isobe, Y.; Yajima, T. Synlett 2000, 1, 1193–1195.
13. The chemical shift values of 3-Me for 4a,b and 5a,b are
estimated from the l values of 1-bromo-4-tert-butyl-1-
methylcyclohexane (Ref. 5) and the substituents effects of
OH (instead of OMe) and ring oxygen atom: (a)
Schneider, H.-J.; Hoppen, V. J. Org. Chem. 1978, 43,
3866–3873; (b) Lambert, J. B.; Vagenas, A. R. Org.
Magn. Reson. 1981, 17, 265–269; (c) Booth, H.; Dixon, J.
M.; Khedhair, K. A.; Readshaw, S. A. Tetrahedron 1990,
46, 1625–1652.
14. The shielding of radical center by the neighboring
methoxy group has been reported: Nagano, H.; Azuma,
Y. Chem. Lett. 1996, 845–846.
15. (a) Deslongchamps, P.; Moreau, C. Can. J. Chem. 1971,
49, 2465–2467; (b) Taillefer, R. J.; Thomas, S. E.;
Nadeau, Y.; Flisza´r, S.; Henry, H. Can. J. Chem. 1980,
58, 1138–1143; (c) Li, S.; Deslongchamps, P. Tetrahedron
Lett. 1993, 34, 7759–7762.
4. Unpublished data.
5. Kiyooka, S.-i; Li, Y.-N.; Shahid, K. A.; Okazaki, M.;
Shuto, Y. Tetrahedron Lett. 2001, 42, 7299–7301.
6. For diastereofacial selectivity in reactions of substituted
cyclohexyl radicals, see: Damm, W.; Giese, B.; Hartung,