10.1002/anie.201804801
Angewandte Chemie International Edition
COMMUNICATION
[14] I. S. Carrico, B. L. Carlson, C. R. Bertozzi, Nat. Chem. Biol. 2007, 3,
321-322.
[15] G. de Almeida, E. M. Sletten, H. Nakamura, K. K. Palaniappan, C. R.
Bertozzi, Angew. Chem. Int. Ed. 2012, 51, 2443-2447.
[16] D. C. Meadows, J. Gervay-Hague, Med. Res. Rev. 2006, 26, 793-814.
[17] M. S. Masri, M. Friedman, J. Protein Chem. 1988, 7, 49-54.
[18] M. Machida, M. I. Machida, Y Kanaoka, Chem. Pharm. Bull. 1977, 25,
2739-2743.
[19] V. Duplan, M. Hoshino, W. Li, T. Honda, M. Fujita, Angew. Chem. Int.
Ed. 2016, 55, 4919-4923.
[20] G. Saito, J. A. Swanson, K.-D. Lee, Adv. Drug Deliv. Rev. 2003, 55,
199-215.
[21] G. Leriche, L. Chisholm, A. Wagner, Bioorg. Med. Chem. 2012, 20,
571-582.
[22] P. M. Cal, G. J. Bernardes, P. M. Gois, Angew. Chem. Int. Ed. 2014, 53,
10585-10587.
[23] G. J. Bernardes, M. Steiner, I. Hartmann, D. Neri, G. Casi, Nat. Protoc.
2013, 8, 2079-2089.
[24] A. Leitner, T. Walzthoeni, A. Kahraman, F. Herzog, O. Rinner, M. Beck,
R. Aebersold, Mol. Cell. Proteomics 2010, 9, 1634-1649.
[25] R. M. Kaake, X. Wang, L. Huang, Mol. Cell. Proteomics 2010, 9, 1650-
1665.
[26] D. D. Roberts, S. D. Lewis, D. P. Ballou, S. T. Olson, J. A. Shafer,
Biochemistry 1986, 25, 5595-5601.
Figure 5. After protection, N-terminal modification by maleimide could be
achieved without being influenced by the cysteine. However, inevitably a little
(10%) lysine-modified adduct by maleimide (denoted by ∗) was present.
Please see the deconvolouted spectra in Figure S15.
[27] T. P. King, Y. Li, L. Kochoumian, Biochemistry 1978, 17, 1499-1506.
[28] M. E. B. Smith, F. F. Schumacher, C. P. Ryan, L. M. Tedaldi, D.
Papaioannou, G. Waksman, S. Caddick, J. R. Baker, J. Am. Chem. Soc.
2010, 132, 1960-1965.
[29] V. Chudasama, M. E. Smith, F. F. Schumacher, D. Papaioannou, G.
Waksman, J. R. Baker, S. Caddick, Chem. Commun. 2011, 47, 8781-
8783.
[30] H. Y. Shiu, T. C. Chan, C. M. Ho, Y. Liu, M. K. Wong, C. M. Che, Chem.
Eur. J. 2009, 15, 3839-3850.
[31] Y. Zhang, X. Zhou, Y. Xie, M. M. Greenberg, Z. Xi, C. Zhou, J. Am.
Chem. Soc. 2017, 139, 6146-6151.
[32] B. Bernardim, P. M. Cal, M. J. Matos, B. L. Oliveira, N. Martinez-Saez, I.
S. Albuquerque, E. Perkins, F. Corzana, A. C. Burtoloso, G. Jimenez-
Oses, G. J. Bernardes, Nat. Commun. 2016, 7, 13128.
[33] C. H. DePuy, M. Isaks, K. L. Eilers, G. F. Morris, J. Org. Chem. 1964,
29, 3503-3507.
Conclusions
In this study, 4-acetoxy cyclopentenone (14) was developed
as a reagent to achieve rapid, cysteine-specific modification of
proteins. This reaction featured fast kinetics with a stable
product. In addition, this conjugation could be tracelessly
removed by exchange with a Michael donor. The conjugation
and regeneration procedure not only had little effect on the
structure or conformation of the protein but also had little
disturbance on the enzymatic activity. Several applications of
this methodology were successfully demonstrated.
[34] P. P. M. A. Dols, L. Lacroix, A. J. H. Klunder, B. Zwanenburg,
Tetrahedron Lett. 1991, 32, 3739-3742.
[35] M. A. Ogliaruso, M. G. Romanelli, E. I. Becker, Chem. Rev. 1965, 65,
Acknowledgements
261-367.
[36] F. G. West, G. U. Gunawardena, J. Org. Chem. 1993, 58, 2402-2406.
[37] B. M. Eschler, R. K. Haynes, M. D. Ironside, S. Kremmydas, D. D.
Ridley, T. W. Hambley, J. Org. Chem. 1991, 56, 4760-4766.
[38] J. F. Bickley, A. Ciucci, P. Evans, S. M. Roberts, N. Ross, M. G.
Santoro, Bioorg. Med. Chem. 2004, 12, 3221-3227.
[39] T. J. Schmidt, Bioorg. Med. Chem. 1997, 5, 645-653.
[40] Q. Ruan, Q. C. Ji, M. E. Arnold, W. G. Humphreys, M. Zhu, Anal. Chem.
2011, 83, 8937-8944.
This paper is dedicated to Prof. Jin-Pei Cheng on the occasion
of his 70th birthday. The financial support of National Natural
Science Foundation of China (NSFC Grant No. 21572116),
National Key Research and Development Program of China
(2017YFA0505203) are acknowledged.
[41] P. Kleiner, W. Heydenreuter, M. Stahl, V. S. Korotkov, S. A. Sieber,
Angew. Chem. Int. Ed. 2017, 56, 1396-1401.
[42] L. Shang, S. Zhang, X. Yang, J. Sun, L. Li, Z. Cui, Q. He, Y. Guo, Y.
Sun, Z. Yin, Antimicrob. Agents Chemother. 2015, 59, 1827-1836.
Keywords: protein modification; cysteine specific; tracelessly
cleavable
[1]
[2]
[3]
[4]
[5]
[6]
I. S. Carrico, Chem. Soc. Rev. 2008, 37, 1423-1431.
O. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495-5551.
O. Boutureira, G. J. Bernardes, Chem. Rev. 2015, 115, 2174-2195.
E. Basle, N. Joubert, M. Pucheault, Chem. Biol. 2010, 17, 213-227.
M. N. Fodje, S. Al-Karadaghi, Protein Eng. 2002, 15, 353-358.
S. J. Sirk, T. Olafsen, B. Barat, K. B. Bauer, A. M. Wu, Bioconjugate
Chem. 2008, 19, 2527-2534.
[7]
[8]
[9]
N. Floyd, B. Vijayakrishnan, J. R. Koeppe, B. G. Davis, Angew. Chem.
Int. Ed. 2009, 48, 7798-7802.
A. Dondoni, A. Massi, P. Nanni, A. Roda, Chem. Eur. J. 2009, 15,
11444-11449.
M. Lo Conte, S. Staderini, A. Marra, M. Sanchez-Navarro, B. G. Davis,
A. Dondoni, Chem. Commun. 2011, 47, 11086-11088.
[10] A. Abbas, B. Xing, T. P. Loh, Angew. Chem. Int. Ed. 2014, 53, 7491-
7494.
[11] E. V. Vinogradova, C. Zhang, A. M. Spokoyny, B. L. Pentelute, S. L.
Buchwald, Nature 2015, 526, 687-691.
[12] T. Wang, A. Riegger, M. Lamla, S. Wiese, P. Oeckl, M. Otto, Y. Wu, S.
Fischer, H. Barth, S. L. Kuan, T. Weil, Chem. Sci. 2016, 7, 3234–3239.
[13] J. M. Chalker, S. B. Gunnoo, O. Boutureira, S. C. Gerstberger, M.
Fernández-González, G. J. L. Bernardes, L. Griffin, H. Hailu, C. J.
Schofield, B. G. Davis, Chem. Sci. 2011, 2, 1666.
This article is protected by copyright. All rights reserved.