A R T I C L E S
Sandee et al.
The energy of the non emissive triplet state in organic
compounds can be harvested by energy transfer to a phospho-
rescent dopant such as a lanthanide or heavy metal organome-
tallic complex. As early as 1990, Kido and colleagues described
an OLED employing [Tb(acac)3] as the phosphor and giving
green light emission,13 and Wittmann, et al.9 proposed the use
of platinum-containing poly-ynes both as semiconductor and
as triplet emitter. In 1998, Thompson and Forrest and their co-
workers published a seminal paper describing the use of
platinum(II) porphyrins (PtOEP) as the phosphor in an OLED
and were able to obtain higher efficiency red-light emission than
had proved possible with lanthanide dopants.14,15 Energy-transfer
processes and the sites of electron-hole recombination in blends
of PtOEP in conjugated polymer hosts have been studied in
some detail by the Cambridge16-18 and Sheffield19,20 groups.
More recently, Thompson and Forrest and colleagues demon-
strated spectacular enhancements in OLED efficiencies, with
external quantum efficiencies as high as 19%, using Ir(III)
cyclometalated complexes as blends in host luminescent
materials.21-29 However, the processing of such materials can
be complex and costly, often requiring deposition under high
vacuum and controlled temperature, and the use of multiple
layers.
phors into conjugated polymer hosts and the fabrication of LEDs
using these composite materials; however, the improvements
in device efficiency have been modest.16-20,33-40 It has been
proposed that energy is lost by transfer to low-lying triplet states
in the polymer host41 or by triplet-triplet annihilation; under
such conditions, the efficiency is limited by phase separation
and aggregation of dopants even at low-blending concentrations.
It is recognized that this could be suppressed when the
phosphorescent dopant and polymer host have similar surface
functional groups42 or when they are implemented in one
composite material.34,43,44 In a recent paper, statistical copoly-
mers based on dioctylfluorene, with hole-transporting moieties
and phosphorescent Ir(III) complexes attached as pendant groups
to the main backbone, were synthesized and showed some
improvements in device efficiency.45
We aim to attach phosphors covalently to a conjugated
polymer backbone so as to allow efficient energy transfer
between polymer and phosphor and further to minimize ag-
gregation and quenching of phosphorescence. Herein, we
describe the controlled synthesis of such oligomers and polymers
based on 9,9-dialkylfluorene repeat units in conjugation with
bis-cyclometalated iridium(III) acac complexes. The photo-
physics of optical and electrical excitation are presented and
this has enabled insights to be drawn into design criteria for
phosphorescent polymer light-emitting devices.
Spin-coatable solutions of well-defined amorphous iridium
complexes blended in polycarbazole and poly(phenylenevi-
nylene) hosts were described by Bazan and Heeger,30 with the
ultimate production of efficient, but multilayer devices.31,32
Considerable attention has been focused on blending of phos-
Results and Discussion
Synthesis and Characterization of Ir(III) Complexes. The
syntheses of either iridium complexes with 2-phenylpyridinato
(ppy) coupled to well-defined oligofluorenes of chain length
1-3 units or iridium complexes with 2-(2′-benzo[b]thienyl)-
pyridinato (btp) coupled to polyfluorenes of longer chain length
(5-40 units) are described. The syntheses presented are
controlled, high yielding, and general involve either a stepwise
building up of oligofluorenes or the application of the Suzuki
polycondensation reaction to yield well-defined polyfluorene
complexes.46,47
(10) Younus, M.; Ko¨hler, A.; Cron, S.; Chawdhury, N.; Al-Mandhary, M. R.
A.; Khan, M. S.; Lewis, J.; Long, N. J.; Friend, R. H.; Raithby, P. R. Angew.
Chem., Int. Ed. 1998, 37, 3036-3039.
(11) Wilson, J. S.; Kohler, A.; Friend, R. H.; Al-Suti, M. K.; Al-Mandhary, M.
R. A.; Khan, M. S.; Raithby, P. R. J. Chem. Phys. 2000, 113, 7627-7634.
(12) Ko¨hler, A.; Wilson, J. S.; Friend, R. H.; Al-Suti, M. K.; Khan, M. S.;
Gerhard, A.; Ba¨ssler, H. J. Chem. Phys. 2002, 116, 9457-9463.
(13) Kido, J.; Nagai, K.; Ohashi, Y. Chem. Lett. 1990, 657-660.
(14) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151-154.
(15) Kwong, R. C.; Sibley, S.; Dubovoy, T.; Baldo, M.; Forrest, S. R.;
Thompson, M. E. Chem. Mater. 1999, 11, 3709-3713.
(16) Cleave, V.; Yahioglu, G.; Le Barny, P.; Friend, R. H.; Tessler, N. AdV.
Mater. 1999, 11, 285-288.
(17) Cleave, V.; Yahioglu, G.; Le Barny, P.; Hwang, D.-H.; Holmes, A. B.;
Friend, R. H.; Tessler, N. AdV. Mater. 2001, 13, 44-47.
(18) Morgado, J.; Cacialli, F.; Iqbal, R.; Moratti, S. C.; Holmes, A. B.; Yahioglu,
G.; Milgrom, L. R.; Friend, R. H. J. Mater. Chem. 2001, 11, 278-283.
(19) Lane, P. A.; Palilis, L. C.; O’Brien, D. F.; Giebeler, C.; Cadby, A. J.; Lidzey,
D. G.; Campbell, A. J.; Blau, W.; Bradley, D. D. C. Phys. ReV. B 2001,
63, 235206.
(33) McGehee, M. D.; Bergstedt, T.; Zhang, C.; Saab, A. P.; O’Regan, M. B.;
Bazan, G. C.; Srdanov, V. I.; Heeger, A. J. AdV. Mater. 1999, 11, 1349-
1354.
(34) Wong, C. T.; Chan, W. K. AdV. Mater. 1999, 11, 455-459.
(35) Guo, T.-F.; Chang, S.-C.; Yang, Y.; Kwong, R. C.; Thompson, M. E. Org.
Electron. 2000, 1, 15-20.
(36) Virgili, T.; Lidzey, D. G.; Bradley, D. D. C. AdV. Mater. 2000, 12, 58-
62.
(20) Campbell, A. J.; Bradley, D. D. C.; Virgili, T.; Lidzey, D. G.; Antoniadis,
H. Appl. Phys. Lett. 2001, 79, 3872-3874.
(21) Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, 750-
753.
(37) Slooff, L. H.; Polman, A.; Cacialli, F.; Friend, R. H.; Hebbink, G. A.; Van
Weggel, F. C. J. M.; Reinhoudt, D. N. Appl. Phys. Lett. 2001, 78, 2122-
2124.
(22) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys.
Lett. 2000, 77, 904-906.
(23) Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.;
Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082-2084.
(24) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys.
2001, 90, 5048-5051.
(38) Chen, F.-C.; Yang, Y.; Thompson, M. E.; Kido, J. Appl. Phys. Lett. 2002,
80, 2308-2310.
(39) Higgins, R. W. T.; Monkman, A. P.; Nothofer, H.-G.; Scherf, U. J. Appl.
Phys. 2002, 91, 99-105.
(25) D’Andrade, B. W.; Baldo, M. A.; Adachi, C.; Brooks, J.; Thompson, M.
E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 1045-1047.
(26) Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.;
Garon, S.; Thompson, M. E. Appl. Phys. Lett. 2003, 82, 2422-2424.
(27) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.;
Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem.
Soc. 2001, 123, 4304-4312.
(40) Zhu, W. G.; Mo, Y. Q.; Yuan, M.; Yang, W.; Cao, Y. Appl. Phys. Lett.
2002, 80, 2045-2047.
(41) Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E. J.
Am. Chem. Soc. 2003, 125, 7796-7797.
(42) Lupton, J. M.; Samuel, I. D. W.; Frampton, M. J.; Beavington, R.; Burn,
P. L. AdV. Funct. Mater. 2001, 11, 287-294.
(43) Iqbal, R.; Yahioglu, G.; Milgrom, L.; Moratti, S. C.; Holmes, A. B.; Cacialli,
F.; Morgado, J.; Friend, R. H. Synth. Met. 1999, 102, 1024-1025.
(44) Morgado, J.; Cacialli, F.; Friend, R. H.; Iqbal, R.; Yahioglu, G.; Milgrom,
L. R.; Moratti, S. C.; Holmes, A. B. Chem. Phys. Lett. 2000, 325, 552-
558.
(28) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.;
Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem.
2001, 40, 1704-1711.
(29) Lamansky, S.; Djurovich, P. I.; Abdel-Razzaq, F.; Garon, S.; Murphy, D.
L.; Thompson, M. E. J. Appl. Phys. 2002, 92, 1570-1575.
(30) Ostrowski, J. C.; Robinson, M. R.; Heeger, A. J.; Bazan, G. C. Chem.
Commun. 2002, 784-785.
(45) Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A.
J. Am. Chem. Soc. 2003, 125, 636-637.
(46) Rees, I. D.; Robinson, K. L.; Holmes, A. B.; Towns, C. R.; O’Dell, R.
MRS Bull. 2002, 27, 451-455.
(31) Gong, X.; Ostrowski, J. C.; Bazan, G. C.; Moses, D.; Heeger, A. J.; Liu,
M. S.; Jen, A. K.-Y. AdV. Mater. 2003, 15, 45-49.
(47) Towns, C. R.; O’Dell, R. Manufacture of conjugated polymers using boron
derivatives. Cambridge Display Technology PCT Int. Appl. 2000
WO200053656-A1 20000914; Chem. Abstr. 2000, 133, 238529.
(32) Gong, X.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. AdV.
Funct. Mater. 2003, 13, 439-444.
9
7042 J. AM. CHEM. SOC. VOL. 126, NO. 22, 2004