974
M. Nichifor et al. / Carbohydrate Polymers 82 (2010) 965–975
ing a better performance of polymers carrying an octyl substituent
and an increase in activity with increasing DS. A study focused on
elucidation of the reason for different activity decided by only one
substituent at quaternary ammonium groups and also on quan-
tification of this activity (minimum inhibitory concentration-MIC
determination) is in progress.
Ghimici, L., Morariu, S., & Nichifor, M. (2009). Separation of clay suspen-
sion by ionic dextran derivatives. Separation and Purification Techniques, 68,
165–171.
Gruber, E., & Ott, T. (1996). Eine neue Methode zur Herstellung von kationischen
Derivaten von Polysacchariden. Das Papier, 4, 157–162.
Haack, V., Heinze, T., Oelmeyer, G., & Kulicke, W. M. (2002). Starch derivatives
of high degree of functionalization, 8. Synthesis and flocculation behavior of
cationic starch polyelectrolytes. Macromolecular Materials and Engineering, 287,
495–502.
Heinze, T., Haack, V., & Rensing, S. (2004). Starch derivatives of high degree of func-
tionalization. 7. Preparation of cationic 2-hydroxypropyltrimethylammonium
chloride Starches. Starch/Stärke, 56, 288–296.
4. Conclusion
Houben Weyl. (1967). (4th edition). Methoden der organischen. Stickstoffverbindun-
gen. II. Herstellung von aminen Tübingen, Germany: Georg Thieme Verlag., p.
323.
Huang, Y., Yu, H., & Xiao, C. (2007). pH-Sensitive cationic guar gum/poly (acrylic
acid) polyelectrolyte hydrogels: Swelling and in vitro drug release. Carbohydrate
Polymers, 69, 774–783.
A new versatile procedure for synthesis of quaternary ammo-
nium group containing polysaccharides was described. Instead of
preformed quaternary ammonium group containing reagents, the
procedure uses a mixture of a tertiary amine and epichlohydrin
which give rise, in situ, to the quaternary ammonium reagents.
This procedure avoids the difficult and expensive synthesis of qua-
ternary ammonium reagents and allows the obtaining of a large
number of polysaccharide derivatives with different properties and
various applications, simply by changing the tertiary amine used in
reaction. The method can be applied to the quaternization of any
neutral polysaccharide, in linear or crosslinked form, and lead to
the formation of well controlled chemical structures, with pendant
quaternary ammonium groups statistically distributed along the
polysaccharide chain.
The procedure allowed the preparation of polysaccharides with
different hydrophilic–lipophilic balance by simply changing the
length of one substituent at the tertiary amine used as a reagent.
These new cationic polysaccharides have self-assembling proper-
ties and potential application as hipolipemic drugs, flocculants,
drug delivery systems or antibacterial agents.
Jay, R. R. (1964). Direct titration of epoxy compounds and aziridines. Analytical
Chemistry, 36, 667–668.
Kavaliauskaite, R., Klimaviciute, R., & Zemaitaitis, A. (2008). Factors influencing pro-
duction of cationic starches. Carbohydrate Polymers, 73, 665–675.
Klimaviciute, R., Riauka, A., & Zemaitaitis, A. (2007). The binding of anionic dyes by
cross-linked cationic starches. Journal of Polymer Research, 14, 67–73.
Köhnke, T., Brelid, H., & Westman, G. (2009). Adsorption of cationized barley husk
xylan on kraft pulp fibres: Influence of degree of cationization on adsorption
characteristics. Cellulose, 16, 1109–1121.
Levy, N., Garti, N., & Magdassi, S. (1995). Flocculation of bentonite suspensions with
cationic guar. Colloid and Surface A, 97, 91–99.
Loiseau, P. M., Imbertie, L., Bories, C., Betbeder, D.,
& De Miguel, I. (2002).
Design and antileishmanial activity of amphotericin B-loaded stable ionic
amphiphile biovector formulations. Antimicrobial Agents and Chemotherapy, 46,
1597–1601.
McClure, J. D. & Williams P. H. (1969). Production of epoxy ammonium salt. US Patent
Office, Pat. No. 3,475,458.
Nichifor, M., Cristea, D., Mocanu, G., & Carpov, A. (1998). Aminated polysaccharides
as bile acid sorbents. Journal of Biomaterial Science: Polymer Edition, 9, 519–534.
Nichifor, M., Zhu, X. X., Baille, W., Cristea, D.,
& Carpov, A. (2001). Bile acid
sequestrants based on cationic dextran hydrogel microspheres. 2. Influence
of the length of the alkyl substituents of the amino groups of the sor-
bents on the sorption of the bile salts. Journal of Pharmaceutical Sciences, 90,
681–689.
References
Nichifor, M., Zhu, X. X., Cristea, D., & Carpov, A. (2001). Interaction of hydrophobi-
cally modified cationic dextran hydrogels with biological surfactants. Journal of
Physical Chemistry B, 105, 2314–2321.
Nichifor, M., Lopes, S., Bastos, M., & Lopes, A. (2004). Self-aggregation of cationic
amphiphilic polyelectrolytes based on polysaccharides. Journal of Physical Chem-
istry B, 108, 16463–16472.
Nichifor, M., Lopes, S., Bastos, M., & Lopes, A. (2008). Characterization of aggre-
gates formed by hydrophobically modified cationic dextran and sodium alkyl
sulfates in salt-free aqueous solutions. Journal of Physical Chemistry B, 111,
15554–15561.
Pal, S., Mal, D., & Singh, R. P. (2005). Cationic starch: An effective flocculating agent.
Carbohydrate Polymers, 59, 417–423.
Pal, S., Mal, D., & Singh, R. P. (2006). Synthesis, characterization and flocculation
characteristics of cationic glycogen: A novel polymeric flocculant. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 289, 193–199.
Pal, S., Sen, G., Karmakar, N. C., Mal, D., & Singh, R. P. (2008). High performance
flocculating agents based on cationic polysaccharides in relation to coal fine
suspension. Carbohydrate Polymers, 74, 590–596.
Pal, S., Ghosh, S., Sen, G., Jha, U., & Singh, R. P. (2009). Cationic tamarind kernel
polysaccharide (Cat TKP): A novel polymeric flocculant for the treatment of tex-
tile industry wastewater. International Journal of Biological Macromolecules, 45,
518–523.
Ren, J. L., Sun, R. C., Liu, C. F., Lin, L., & He, B. H. (2007). Synthesis and characteri-
zation of novel cationic SCB hemicelluloses with a low degree of substitution.
Carbohydrate Polymers, 67, 347–357.
Sajomsang, W., Gonil, P., & Tantayanon, S. (2009). Antibacterial activity of quaternary
ammonium chitosan containing mono or disaccharide moieties: Preparation
and characterization. International Journal of Biological Macromolecules, 44,
419–427.
Abbott, A. P., Bell, T. J., Handa, A., & Stoddart, B. (2006). Cationic functionalisa-
tion of cellulose using a choline based ionic liquid analogue. Green Chemistry,
8, 784–786.
Antal, M., & Micko, M. (1992). Preparation of microcrystalline cellulose aminoderiva-
tives. Carbohydrate Polymers, 19, 167–169.
Bai, G., Santos, L. F. M. B., Nichifor, M., Lopes, A., & Bastos, M. (2004). thermodynam-
ics of the interaction between a hydrophobically modified polyelectrolyte and
sodium dodecyl sulfate in aqueous solution. Journal of Physical Chemistry, 108,
405–413.
Bai, G., Nichifor, M., Lopes, A., & Bastos, M. (2005a). Thermodynamic characterization
of the interaction behaviour of a hydrophobically modified polyelectrolyte and
oppositely charged surfactants in aqueous solution: Effect of the surfactant alkyl
chain length”. Journal of Physical Chemistry B, 109, 518–525.
Bai, G., Nichifor, M., Lopes, A., & Bastos, M. (2005b). Thermodynamics of self-
assembling of hydrophobically modified cationic polysaccharides and their
mixtures with oppositely charged surfactants in aqueous solution. Journal of
Physical Chemistry B, 109, 21681–21689.
Bai, G., Catita, J. A. M., Nichifor, M., & Bastos, M. (2007). Microcalorimetric evidence of
hydrophobic interactions between hydrophobically modified cationic polysac-
charides and surfactants of the same charge. Journal of Physical Chemistry B, 111,
11453–11462.
Bajgai, M. P., Parajuli, D. C., Ko, J. A., Kang, H. K., Khil, M. S., & Kim, H. Y. (2009).
Synthesis, characterization and aqueous dispersion of dextran-g-poly(1,4-
dioxan-2-one) copolymers. Carbohydrate Polymers, 78, 833–840.
Belalia, R., Grelier, S., Benaissa, M., & Coma, V. (2008). New bioactive biomaterials
based on quaternized chitosan. Journal of Agricultural and Food Chemistry, 56,
1582–1588.
Bendoraitiene, J., Kavaliauskaite, R., Klimaviciute, R.,
& Zemaitaitis, A. (2006).
Sajomsang, W., Tantayanon, S., Tangpasuthadol, V., & Daly, W. H. (2009). Quaterniza-
tion of N-aryl chitosan derivatives: Synthesis, characterization, and antibacterial
activity. Carbohydrate Research, 344, 2502–2511.
Simkovic, I., Mlynar, J., & Alfoldi, J. (1992). Modification of corn cob meal with qua-
ternary ammonium groups. Carbohydrate Polymers, 17, 285–288.
Song, Y., Sun, Y., Zhang, X., Zhou, J., & Zhang, L. (2008). Homogeneous quaternization
of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules,
9, 2259–2264.
Peculiarities of starch cationization with glycidyltrimethylammonium chloride.
Starch/Stärke, 58, 623–631.
Brode, G. L., Goddard, E. D., Harris, W. C., & Salensky, G. A. (1991). Cationic polysac-
charides for cosmetics and therapeutics. In C. G. Gebelein, T. C. Cheng, & V. C.
Yang (Eds.), Cosmetic and pharmaceutical applications of polymers (pp. 117–128).
New York, USA: Plenum Press.
Brode, G. L., Kreeger, R. L., & Salensky, G. A. (1995). Double substituted cationic cellulose
ethers. U.S. Patent Office, Pat. No. 5,407,919.
Brode, G. L., Kawakami, J. H., Doncel, G., & Kemnitzer, J. E. (1998). Hydrophobe-
modified cationic polysaccharides (HCPs) for topical microbicide delivery.
American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 39,
206–207.
Souguir, Z., Roudesli, S., About-Jaudet, E., Picton, L., & Le Cerf, D. (2010). Novel cationic
and amphiphilic pullulan derivatives II: pH dependant physicochemical prop-
erties. Carbohydrate Polymers, 80, 123–129.
Thomas, J. J., Rekha, M. R., & Sharma, C. P. (2010). Dextran–glycidyltrimethyl
ammonium chloride conjugate/DNA nanoplex:
A potential non-viral and
Brostow, W., Lobland, H. E. H., Pal, S., & Singh, R. P. (2008). Settling rates for floccu-
lation of iron and manganese ore-containing suspensions by cationic glycogen.
Polymer Engineering and Science, 48, 1892–1896.
haemocompatible gene delivery system. International Journal of Pharmaceutics,
389, 195–206.