K. Kaneda et al.
3.69 (s, 3H), 4.15 (q, J = 7.2 Hz, 2H), 7.25–7.34 ppm (m, 5H); 13C{1H}
NMR (100.4 MHz, CDCl3): d = 13.9, 30.1, 32.0, 43.2, 50.5, 51.9, 62.9,
118.1, 127.8, 128.5, 129.8, 133.6, 167.7, 171.7 ppm; IR (KBr): n˜max = 2985,
2955, 2246, 1740, 1499, 1448, 1381, 1227, 1203, 1091, 1016, 857, 773, 745,
702 cmÀ1; MS (EI): m/z (%): 289 [M+], 258, 212, 202, 184, 174, 155, 142,
129, 115, 91 (100), 77; HRMS calcd for C16H19NO4: 289.1314; found:
289.1299.
4-Carboethoxy-4-cyano-5-phenylpentanoic acid n-butyl ester: 1H NMR
(270 MHz, CDCl3): d = 0.93 (t, J = 7.4 Hz, 3H), 1.17 (t, J = 7.1 Hz,
3H), 1.30–1.44 (m, 2H), 1.55–1.66 (m, 2H), 2.14–2.65 (m, 4H), 3.15 (dd,
J = 13.5, 37.2 Hz, 2H), 4.12 (m, 4H), 7.25–7.34 ppm (m, 5H); 13C{1H}
NMR (67.8 MHz, CDCl3): d = 13.6, 13.9, 19.1, 30.3, 30.5, 32.0, 43.1, 50.5,
62.8, 64.7, 118.1, 127.8, 128.4, 129.7, 133.6, 167.7, 171.2 ppm; IR (KBr):
n˜max = 3033, 2964, 2939, 2874, 2246, 1736, 1498, 1455, 1397, 1371, 1292,
1229, 1186, 1089, 1065, 1018, 964, 945, 857, 771, 743, 701 cmÀ1; MS (EI):
m/z (%): 331 [M+], 302, 285, 272, 258, 243, 230, 212, 202, 184, 174, 155,
142, 129, 115, 103, 91 (100), 74, 55; HRMS calcd for C19H25NO4:
331.1784; found: 331.1810.
yield of 2-ethyl-2-phenylglutarodinitrile based on phenylacetonitrile. For
the reactions of methyl acrylate and acryl amide as Michael acceptors,
the solvent used was DMSO instead of DMF.
4-Cyano-4-phenylhexanoic acid methyl ester: 1H NMR (400 MHz,
CDCl3): d = 0.85 (t, J = 7.4 Hz, 3H), 1.85–2.44 (m, 6H), 3.54 (s, 3H),
7.22–7.37 ppm (m, 5H); 13C {1H} NMR (100.4 MHz, CDCl3): d = 9.6,
30.2, 34.3, 35.4, 48.4, 51.7, 121.5, 125.9, 127.9, 128.9, 137.0, 172.5 ppm; IR
(KBr): n˜max = 2974, 2880, 2236, 1738, 1493, 1448, 1438, 1375, 1337, 1296,
1257, 1201, 1173, 1030, 1011, 899, 882, 762, 700, 624, 517 cmÀ1; MS (EI):
m/z (%): 231 [M+], 216, 204, 200, 189, 170, 157, 142 (100), 129, 115, 103,
91, 77; HRMS calcd for C14H17NO2: 231.1259; found: 231.1282.
1
4-Cyano-4-phenylhexanoic acid amide: H NMR (400 MHz, CDCl3): d =
0.91 (t, J = 7.4 Hz, 3H), 1.93–2.08 (m, 3H), 2.18–2.43 (m, 3H), 5.25–5.88
(br, 2H), 7.28–7.39 ppm (m, 5H); 13C {1H} NMR (100.4 MHz, CDCl3): d
= 10.4, 32.2, 35.2, 36.2, 49.2, 122.5, 126.6, 128.6, 129.6, 137.8, 174.2 ppm;
IR (KBr): n˜max = 3433, 3201, 2974, 2935, 2236, 1669, 1455, 1416, 1025,
762, 700, 584, 519 cmÀ1; MS (EI): m/z (%): 216 [M+], 199, 187, 170, 158,
144, 129, 115, 103, 91, 77, 73, 59 (100), 44; HRMS calcd for C13H16N2O:
216.1263; found: 216.1275.
4-Carboethoxy-4-cyano-5-phenyl-2-hexanone: 1H NMR (400 MHz,
CDCl3): d = 1.17 (t, J = 7.2 Hz, 3H), 2.08–2.76 (m, 4H), 2.16 (s, 3H),
IR measurements: After treatment of the HT, Ru/HT, and Pdnano/HT
with substrates in toluene, the solid catalysts were filtered, dried under
an atmospheric pressure, and made into a disk with KBr. All manipula-
3.14 (dd, J
= 13.4 , 54.6 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 7.23–
7.34 ppm (m, 5H); 13C{1H} NMR (100.4 MHz, CDCl3): d = 13.9, 29.9,
30.7, 39.2, 43.2, 50.5, 62.8, 118.4, 127.8, 128.4, 129.8, 133.7, 167.9,
205.3 ppm; IR (KBr): n˜max = 3064, 3034, 2983, 2936, 2245, 1957, 1887,
1739, 1676, 1644, 1543, 1496, 1448, 1367, 1223, 1167, 1094, 1022, 961, 917,
859, 775, 743, 702, 618, 571, 481 cmÀ; MS (EI): m/z (%): 273 [M+], 255,
244, 228, 216, 203, 182, 174, 158, 142, 130, 115, 103, 91 (100), 71, 78, 65,
43; HRMS calcd for C16H19NO3: 273.1365; found: 273.1383.
À
tions for the measurement of Ru H species were carried out under an
Ar atmosphere. Figure 9 shows the IR spectra of both the HT and Pdnano
/
HT upon treatment with 5.
Synthesis of a,a-dialkyl phenylacetonitrilesusing the Ru/HT : The Ru/HT
(0.15 g, Ru: 0.0075 mmol), ethanol (2 mL), and phenylacetonitrile
(1.0 mmol) were placed into a pyrex pressure tube (15 mL). The reaction
mixture was vigorously stirred at 1808C under Ar for 20 h. After comple-
tion of the alkylation, excess ethanol was evaporated. Acrylonitrile
(3.0 mmol) and DMF (2 mL) were then added to the same pressure tube
and further reaction occurred at 1508C. After 1 h, the catalyst was sepa-
rated by filtration, and the GC analysis of the filtrate showed a 93%
Acknowledgements
This investigation was supported by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Culture, Sports, Science, and
Technology of Japan (16206078). We thank Dr. Tomoya Uruga and Dr.
Hajime Tanida (JASRI) for XAFS measurements and the Center of Ex-
cellence (21COE; program “Creation of Integrated Ecochemistry”,
Osaka University). TEM measurements were conducted at the Research
Center for Ultrahigh-Voltage Electron Microscopy at Osaka University.
We are also grateful to the Department of Materials Engineering Sci-
ence, Graduate School of Engineering Science, Osaka University, for sci-
entific support with the gas-hydrate analyzing system (GHAS). K. M.
thanks the JSPS Research Fellowships for Young Scientists.
[1] a) S. S. Kulp, M. J. McGee, J. Org. Chem. 1983, 48, 4097; b) R. W.
Hartmann, C. Batzl, J. Med. Chem. 1986, 29, 1362; c) D. S. Im, C. S.
Cheong, S. H. Lee, B. H. Youn, S. C. Kim, Tetrahedron 2000, 56,
1309; d) Z.-L. Wu, Z.-Y. Li, Tetrahedron: Asymmetry 2001, 12, 3305;
e) H. Takaya, K. Yoshida, K. Isozaki, H. Terai, S.-I. Murahashi,
Angew. Chem. 2003, 115, 3424; Angew. Chem. Int. Ed. 2003, 42,
3302; f) Z.-L. Wu, Z.-Y. Li, J. Org. Chem. 2003, 68, 2479.
[2] a) B. M. Trost, Science 1991, 254, 1471; b) R. A. Sheldon, CHEM-
TECH 1994, 38; c) B. M. Trost, Angew. Chem. 1995, 107, 285;
Angew. Chem. Int. Ed. Engl. 1995, 34, 259; d) R. A. Sheldon, Pure
Appl. Chem. 2000, 72, 1233; e) B. M. Trost, Acc. Chem. Res. 2002,
35, 695.
[3] R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, Tetra-
hedron Lett. 1981, 22, 4107.
[4] a) S. Miyata, Clays Clay Miner. 1980, 28, 50; b) F. Cavani, F. Trfirꢁ,
A. Vaccari, Catal. Today 1991, 11, 173.
[5] B. F. Sels, D. E. De Vos, P. A. Jacobs, Catal. Rev. 2001, 43, 443.
[6] a) K. Yamaguchi, K. Ebitani, K. Kaneda, J. Org. Chem. 1999, 64,
2966; b) K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, K.
Kaneda, J. Org. Chem. 2000, 65, 6897; c) K. Yamaguchi, T. Mizuga-
ki, K. Ebitani, K. Kaneda, New J. Chem. 1999, 23, 799; d) B. M.
Choudary, M. L. Kantam, B. Kavita, C. V. Reddy, K. K. Rao, F. Fig-
ueras, Tetrahedron Lett. 1998, 39, 3555; e) M. L. Kantam, B. M.
Choudary, C. V. Reddy, K. K. Rao, F. Figueras, Chem. Commun.
Figure 9. IR spectra of the samples A) HT, B) Pdnano/HT, C) free 5, D)
after treatment of the HT with 5, and E) after treatment of the Pdnano/HT
*
with 5; : adsorbed CN group of 5 on the HT surface.
8238
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 8228 – 8239