Organic Letters
Letter
Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315−8359. (b) Swallow,
S. Fluorine in medicinal chemistry. Prog. Med. Chem. 2015, 54, 65−133.
(2) Reviews: (a) Jeschke, P. The unique role of halogen substituents in
the design of modern agrochemicals. Pest Manage. Sci. 2010, 66, 10−27.
(c) Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide
agrochemicals. J. Fluorine Chem. 2014, 167, 16−29.
aldehydes. J. Fluorine Chem. 1981, 17, 299−304. (b) Morandi, B.;
Carreira, E. M. Synthesis of Trifluoroethyl-Substituted Ketones from
Aldehydes and Cyclohexanones. Angew. Chem., Int. Ed. 2011, 50,
9085−9088.
(9) (a) Allen, A. D.; Angelini, G.; Paradisi, C.; Stevenson, A.; Tidwell,
T. T. Protonation of 1-aryl-3,3,3-trifluoropropynes. Tetrahedron Lett.
1989, 30, 1315−1318. (b) Alkhafaji, H. M. H.; Ryabukhin, D. S.;
Muzalevskiy, V. M.; Vasilyev, A. V.; Fukin, G. K.; Shastin, A. V.;
Nenajdenko, V. G. Regiocontrolled Hydroarylation of
(Trifluoromethyl)acetylenes in Superacids: Synthesis of CF3-Sub-
stituted 1,1-Diarylethenes. Eur. J. Org. Chem. 2013, 2013, 1132−1143.
(10) Reviews: (a) Kirsch, P. The Pentafluorosulfuranyl Group and
Related Structures. In Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications; Wiley-VCH: Weinheim, 2004; pp 146−156.
(b) Altomonte, S.; Zanda, M. Synthetic chemistry and biological
activity of pentafluorosulphanyl (SF5) organic molecules. J. Fluorine
Chem. 2012, 143, 57−93. (c) Savoie, P. R.; Welch, J. T. Preparation and
Utility of Organic Pentafluorosulfanyl-Containing Compounds. Chem.
Rev. 2015, 115, 1130−1190.
(11) Bowden, R. D.; Comina, P. J.; Greenhall, M. P.; Kariuki, B. M.;
Loveday, A.; Philp, D. A New Method for the Synthesis of Aromatic
Sulfurpentafluorides and Studies of the Stability of the Sulfurpenta-
fluoride Group in Common Synthetic Transformations. Tetrahedron
2000, 56, 3399−3408.
(12) For selected recent examples, see: (a) Kanishchev, O. S.; Dolbier,
W. R., Jr. Ni/Ir-Catalyzed Photoredox Decarboxylative Coupling of S-
Substituted Thiolactic Acids with Heteroaryl Bromides: Short
Synthesis of Sulfoxalor and Its SF5 Analog. Chem. - Eur. J. 2017, 23,
7677−7681. (b) Kenyon, P.; Mecking, S. Pentafluorosulfanyl
Substituents in Polymerization Catalysis. J. Am. Chem. Soc. 2017,
139, 13786−13790. (c) Kanishchev, O. S.; Dolbier, W. R., Jr. Synthesis
of 6-SF5-indazoles and an SF5-analog of Gamendazole. Org. Biomol.
Chem. 2018, 16, 5793−5799.
(3) Reviews: (a) Berger, R.; Resnati, G.; Metrangolo, P.; Weberd, E.;
Hulliger, J. Organic fluorine compounds: a great opportunity for
enhanced materials properties. Chem. Soc. Rev. 2011, 40, 3496−3508.
(b) Ragni, R.; Punzi, A.; Babudri, F.; Farinola, G. M. Organic and
Organometallic Fluorinated Materials for Electronics and Optoelec-
tronics: A Survey on Recent Research. Eur. J. Org. Chem. 2018, 2018,
3500−3519.
(4) For selected recent reviews, see: (a) Charpentier, J.; Fruh, N.;
̈
Togni, A. Electrophilic Trifluoromethylation by Use of Hypervalent
Iodine Reagents. Chem. Rev. 2015, 115, 650−682. (b) Liu, X.; Xu, C.;
Wang, M.; Liu, Q. Trifluoromethyltrimethylsilane: Nucleophilic
Trifluoromethylation and Beyond. Chem. Rev. 2015, 115, 683−730.
(c) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in Catalytic
Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation,
and Trifluoromethylthiolation Reactions. Chem. Rev. 2015, 115, 826−
870. (d) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios,
F. Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives
and Heteroarenes. Chem. Rev. 2015, 115, 1847−1935.
́
(5) (a) Novak, P.; Lishchynskyi, A.; Grushin, V. V. Trifluoromethy-
lation of α-Haloketones. J. Am. Chem. Soc. 2012, 134, 16167−16170.
(b) Mazloomi, Z.; Bansode, A.; Benavente, P.; Lishchynskyi, A.;
Urakawa, A.; Grushin, V. V. Continuous Process for Production of
CuCF3 via Direct Cupration of Fluoroform. Org. Process Res. Dev. 2014,
18, 1020−1026.
(6) (a) He, Z.; Zhang, R.; Hu, M.; Li, L.; Ni, C.; Hu, J. Copper-
mediated trifluoromethylation of propiolic acids: facile synthesis of α-
trifluoromethyl ketones. Chem. Sci. 2013, 4, 3478−3483. (b) Tomita,
R.; Yasu, Y.; Koike, T.; Akita, M. Combining Photoredox-Catalyzed
Trifluoromethylation and Oxidation with DMSO: Facile Synthesis of
α-Trifluoromethylated Ketones from Aromatic Alkenes. Angew. Chem.,
Int. Ed. 2014, 53, 7144−7148.
(13) (a) Kleemann, G.; Seppelt, K. Methylschwefelpentafluorid und
einige seiner Derivate. Chem. Ber. 1979, 112, 1140−1146. (b) Henkel,
T.; Kriigerke, T.; Seppelt, K. Isomerization of Benzoylalkylidene Sulfur
Tetrafluorides C6H5−CO−CR=SF4 to Dihydrooxathietes. Angew.
Chem., Int. Ed. Engl. 1990, 29, 1128−1129. (c) Dolbier, W. A., Jr.;
Aït-Mohand, S.; Schertz, T. D.; Sergeeva, T. A.; Cradlebaugh, J. A.;
Mitani, A.; Gard, G. L.; Winter, R. W.; Thrasher, J. S. A convenient and
efficient method for incorporation of pentafluorosulfanyl (SF5)
substituents into aliphatic compounds. J. Fluorine Chem. 2016, 127,
1302−1310. (d) Penger, A.; von Hahmann, C. N.; Filatov, A. S.; Welch,
J. T. Diastereoselectivity in the Staudinger reaction of pentafluor-
osulfanylaldimines and ketimines. Beilstein J. Org. Chem. 2013, 9, 2675−
(7) For selected recent examples, see: (a) Saidalimu, I.; Tokunaga, E.;
Shibata, N. Carbene-Induced Intra- vs Intermolecular TransferFluor-
omethylation of Aryl Fluoromethylthio Compounds under Rhodium
Catalysis. ACS Catal. 2015, 5, 4668−4672. (b) Jacquet, J.; Blanchard,
S.; Derat, E.; Desage-El Murr, M.; Fensterbank, L. Redox-ligand
sustains controlled generation of CF3 radicals by well-defined copper
complex. Chem. Sci. 2016, 7, 2030−2036. (c) Wu, Y.-b.; Lu, G.-p.;
Yuan, T.; Xu, Z-b.; Wan, L.; Cai, C. Oxidative trifluoromethylation and
fluoroolefination of unactivated olefins. Chem. Commun. 2016, 52,
13668−13670. (d) Qin, H.-T.; Wu, S.-W.; Liu, J.-L.; Liu, F.
Photoredox-catalysed redox-neutral trifluoromethylation of vinyl azides
for the synthesis of α-trifluoromethylated ketones. Chem. Commun.
2017, 53, 1696−1699. (e) Su, X.; Huang, H.; Yuan, Y.; Li, Y. Radical
Desulfur-Fragmentation and Reconstruction of Enol Triflates: Facile
Access to α-Trifluoromethyl Ketones. Angew. Chem., Int. Ed. 2017, 56,
1338−1341. (f) Kawamoto, T.; Sasaki, R.; Kamimura, A. Synthesis of α-
Trifluoromethylated Ketones from Vinyl Triflates in the Absence of
External Trifluoromethyl Sources. Angew. Chem., Int. Ed. 2017, 56,
1342−1345. (g) Liu, S.; Jie, J.; Yu, J.; Yang, X. Visible light induced
Trifluoromethyl Migration: Easy Access to α-Trifluoromethylated
Ketones from Enol Triflates. Adv. Synth. Catal. 2018, 360, 267−271.
(h) Das, S.; Hashmi, A. S. K.; Schaub, T. Direct Photoassisted α-
Trifluoromethylation of Aromatic Ketones with Trifluoroacetic
Anhydride (TFAA). Adv. Synth. Catal. 2019, 361, 720−724.
(i) Calvo, R.; Comas-Vives, A.; Togni, A.; Katayev, D. Taming Radical
Intermediates for the Constructionof Enantioenriched Trifluorome-
thylated Quaternary Carbon Centers. Angew. Chem., Int. Ed. 2019, 58,
1447−1452.
́
2680. (e) Dudzinski, P.; Matsnev, A. V.; Thrasher, J. S.; Haufe, G.
Synthesis of SF5CF2-Containing Enones and Instability of This Group
in Specific Chemical Environments and Reaction Conditions. J. Org.
Chem. 2016, 81, 4454−4463.
(14) Hamel, J.-D.; Hayashi, T.; Cloutier, M.; Savoie, P. R.; Thibeault,
O.; Beaudoin, M.; Paquin, J.-F. Highly regioselective gold-catalyzed
formal hydration of propargylic gem-difluorides. Org. Biomol. Chem.
2017, 15, 9830−9836.
(15) Hamel, J.-D.; Paquin, J.-F. Au-catalyzed intramolecular hydro-
alkoxylation of gem-difluorinated alkynols. J. Fluorine Chem. 2018, 216,
11−23.
(16) Goodwin, J. A.; Aponick, A. Regioselectivity in the Au-catalyzed
hydration and hydroalkoxylation of alkynes. Chem. Commun. 2015, 51,
8730−8741.
(17) For selected reviews on gold chemistry and its applications:
(a) Hashmi, A. S. K. Homogeneous gold catalysts and alkynes: A
successful liaison. Gold Bull. 2003, 36, 3−9. (b) Hutchings, G. J.; Brust,
M.; Schmidbaur, H. Goldan introductory perspective. Chem. Soc.
Rev. 2008, 37, 1759−1765. (c) Li, Z.; Brouwer, C.; He, C. Gold-
Catalyzed Organic Transformations. Chem. Rev. 2008, 108, 3239−
3265. (d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Ligand Effects in
Homogeneous Au Catalysis. Chem. Rev. 2008, 108, 3351−3378.
(e) Yang, W.; Hashmi, A. S. K. Mechanistic insights into the gold
chemistry of allenes. Chem. Soc. Rev. 2014, 43, 2941−2955. (f) Dorel,
(8) A notable exception is the carbonyl homologation reactions using
CF3CHN2 initially reported by Wakselman and significantly improved
latter by Carreira, see: (a) Tordeux, M.; Wakselman, C. Lewis acid
catalyzed addition of 2,2,2-trifluorodiazoethane to unactivated
D
Org. Lett. XXXX, XXX, XXX−XXX