3624 J. Phys. Chem. A, Vol. 107, No. 19, 2003
Oosterbaan et al.
(38) Pasman, P.; Rob, F.; Verhoeven, J. W. J. Am. Chem. Soc. 1982,
104, 5127-5133.
References and Notes
(1) Wasielewski, M. R. Chem. ReV. 1992, 92, 435-461.
(2) Oevering, H.; Paddon-Row: M. N.; Heppener, M.; Oliver, A. M.;
Cotsaris, E.; Verhoeven, J. W.; Hush, N. S. J. Am. Chem. Soc. 1987, 109,
3258-3269.
(3) Bolton, J. R., Mataga, N.,McLendon, G., Eds. Electron Transfer
in Inorganic, Organic, and Biological Systems; Advances in Chemistry
Series 228; American Chemical Society: Washington, DC, 1991.
(4) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996,
100, 13148-13168.
(5) McConnell, H. M. J. Chem. Phys. 1961, 35, 508-515.
(6) Friesner, R. A.; Won, Y. Biochim. Biophys. Acta 1989, 977, 99-
122.
(7) Tsue, H.; Imahori, H.; Kaneda, T.; Tanaka, Y.; Okada, T.; Tamaki,
K.; Sakata, Y. J. Am. Chem. Soc. 2000, 122, 2279-2288.
(8) Miller, S. E.; Lukas, A. S.; Marsh, E.; Bushard, P.; Wasielewski,
M. R. J. Am. Chem. Soc. 2000, 122, 7802-7810.
(9) Bixon, M.; Jortner, J. J. Chem. Phys. 1997, 107, 5154-5170.
(10) Sumi, H.; Kakitani, T. Chem. Phys. Lett. 1996, 252, 85-93.
(11) Hoogesteger, F. J.; Havenith, R. W. A.; Zwikker, J. W.; Jenneskens,
L. W.; Kooijman, H.; Veldman, N.; Spek, A. L. J. Org. Chem. 1995, 60,
4375-4384.
(12) Marsman, A. W.; Havenith, R. W. A.; Bethke, S.; Jenneskens, L.
W.; Gleiter, R.; van Lenthe, J. H.; Lutz, M.; Spek, A. L. J. Org. Chem.
2000, 65, 4584-4592.
(13) Marsman, A. W.; Havenith, R. W. A.; Bethke, S.; Jenneskens, L.
W.; Gleiter, R.; van Lenthe, J. H. Eur. J. Org. Chem. 2000, 2629-2641.
(14) Bakkers, E. P. A. M.; Roest, A. L.; Marsman, A. W.; Jenneskens,
L. W.; de Jong-van Steensel, L. I.; Kelly, J. J.; Vanmaekelbergh, D. J.
Phys. Chem. B 2000, 104, 7266-7272.
(15) Bakkers, E. P. A. M.; Marsman, A. W.; Jenneskens, L. W.;
Vanmaekelbergh, D. Angew. Chem., Int. Ed. Engl. 2000, 39, 2297-2299.
(16) Holmlin, R. E.; Ismagilov, R. F.; Haag, R.; Mujica, V.; Ratner, M.
A.; Rampi, M. A.; Whitesides, G. M. Angew. Chem., Int. Ed. Engl. 2001,
40, 2316-2320.
(17) Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R.
Nature 1998, 396, 60-63.
(18) Hoogesteger, F. J.; van Walree, C. A.; Jenneskens, L. W.; Roest,
M. R.; Verhoeven, J. W.; Schuddeboom, W.; Piet, J. J.; Warman, J. M.
Chem. Eur. J. 2000, 6, 2948-2959.
(19) For a related example see: Willemse, R. J. Photoinduced Electron
Transfer in Donor-Acceptor Systems with Redox-Active Bridges. Thesis,
University of Amsterdam, Amsterdam, The Netherlands, 1997.
(20) Wegewijs, B.; Hermant, R. M.; Verhoeven, J. W.; Kunst, A. G.
M.; Rettschnick, R. P. H. Chem. Phys. Lett. 1987, 140, 587-590.
(21) Lauteslager, X. Y.; van Stokkum, I. H. M.; van Ramesdonk, H. J.;
Brouwer, A. M.; Verhoeven, J. W. J. Phys. Chem. A 1999, 103, 653-659.
(22) Wegewijs, B.; Verhoeven, J. W. Long-Range Charge Separation
in Solvent-Free Donor-Bridge-Acceptor Systems. In Electron-Transfer from
Isolated Molecules to Biomolecules, Part One; Jortner, J.; Bixon, M., Eds.;
Advances in Chemical Physics 106; John Wiley & Sons: New York, 1999.
(23) Schuddeboom, W.; Scherer, T.; Warman, J. M.; Verhoeven, J. W.
J. Phys. Chem. 1993, 97, 13092-13098.
(39) Hermant, R. M.; Bakker, N. A. C.; Scherer, T.; Krijnen, B.;
Verhoeven, J. W. J. Am. Chem. Soc. 1990, 112, 1214-1221.
(40) Scherer, T.; Hielkema, W.; Krijnen, B.; Hermant, R. M.; Eijckelhoff,
C.; Kerkhof, F.; Ng, A. K. F.; Verleg, R.; van der Tol, E. B.; Brouwer, A.
M.; Verhoeven, J. W. Recl. TraV. Chim. Pays-Bas 1993, 112, 535-548.
(41) Excitation spectra suggest that the remaining “local emission” is,
at least in part, due to emission from molecules which lack the acceptor
and are present as a minor impurity.
(42) Marcus, R. A. J. Phys. Chem. 1989, 93, 3078-3086.
(43) It should be noted that for the fitting procedure the experimental
spectra I(λ) were converted to a cm-1 scale without correction for the
intensity (which is usually done via I(ν) = λ2I(λ), see Lakowicz, J. R.
Principles of Fluorescence Spectroscopy; Plenum Press: New York, 1983;
Chapter 2) since this correction will shift the maxima. Without correction
the fitted maxima νmax in cm-1 are directly comparable to experimental
maxima νf.
(44) Fraser, R. D. B.; Suzuki, E. Anal. Chem. 1969, 41, 37-39.
(45) Variation of the band widths ∆ν in the range (4.75-5.50) × 103
cm-1 did not result in shifts of maxima νmax larger than ca. 300 cm-1 relative
to the values in Table 4.
(46) The contribution of a small amount of CCT emission in these
solvents cannot be excluded.
(47) Beens, H.; Knibbe, H.; Weller, A. J. Chem. Phys. 1967, 47, 1183-
1184.
(48) Lippert, E. Z. Elektrochem. 1957, 61, 962-975.
(49) Here it is assumed that F3 varies as the product of Rc and the
2
2
molecule’s cross section and that µe varies as the product of Rc and e2.
(50) Shida, T. Electronic Absorption Spectra of Radical Ions; Physical
Sciences Data 34; Elsevier: Amsterdam, 1988.
(51) Roest, M. R.; Lawson, J. M.; Paddon-Row: M. N.; Verhoeven, J.
W. Chem. Phys. Lett. 1994, 230, 536-542.
(52) The fluorescence maxima in THF were omitted in these fits. Their
position and the polar nature of the solvent are in line with the occurrence
of ECT fluorescence.
(53) A comparison with D[3π3]A instead of D[3]A yields distances of
2.1-2.3 Å.
(54) One of the referees remarked that the energy of a virtual state is
not solvent dependent since there is no driving force for solvent alignment.
However, in the (relaxed) CCT state, solvent reorganization has already
occurred around the acceptor and this will also have a stabilizing effect on
the virtual [3π•+3]A•- state. Thus, the [3π•+3]A•- level is also solvent
dependent.
(55) van Walree, C. A.; Roest, M. R.; Schuddeboom, W.; Jenneskens,
L. W.; Verhoeven, J. W.; Warman, J. M.; Kooijman, H.; Spek, A. L. J.
Am. Chem. Soc. 1996, 118, 8395-8407.
(56) van Dijk, S. I.; Wiering, P. G.; van Staveren, R.; van Ramesdonk,
H. J.; Brouwer, A. M.; Verhoeven, J. W. Chem. Phys. Lett. 1993, 214,
502-506.
(57) Wasielewski, M. R.; Niemczyk, M. P.; Johnson, D. G.; Svec, W.
A.; Minsek, D. W. Tetrahedron 1989, 45, 4785-4806.
(58) de Haas, M. P.; Warman, J. M. Chem. Phys. 1982, 73, 35-53.
(59) Schuddeboom, W. Photophysical Properties of Opto-Electric
Molecules Studied by Time-Resolved Microwave Conductivity. Thesis,
Delft University of Technology, Delft, The Netherlands, 1994.
(60) Weller, A. Z. Phys. Chem., Neue Folge 1982, 133, 93-98.
(61) Rehm, D.; Weller, A. Ber. Bunsen-Ges. Phys. Chem. 1969, 73,
834-839.
(62) For the absorption spectrum, this is a plot of ꢀ(ν)/ν vs. ν. For
fluorescence spectra the wavenumber dependency of the Einstein coefficient
of spontaneous emission has to be taken into account and the corrected
spectrum is represented by I(ν)/ν3 vs ν, where I(ν) = I(λ)λ2.
(63) Bolton, J. R.; Archer, M. D. Basic Electron-Transfer Theory. In
AdVances in Chemistry Series 228: Electron Transfer in Inorganic, Organic,
and Biological Systems; Bolton, J. R., Mataga, N., McLendon, G., Eds.;
American Chemical Society: Washington, DC, 1991.
(24) Hoogesteger, F. J. Oligo(Cyclohexylidenes), Development of Novel
Functional and Organized Materials. Thesis, Utrecht University, Utrecht,
The Netherlands, 1996.
(25) Sa´nchez, I. H.; Ortega, A.; Garc´ıa, G.; Larraza, M. I.; Flores, H. J.
Synth. Commun. 1985, 15, 141-149.
(26) Wells, A. P.; Kitching, W. J. Chem. Soc., Perkin Trans. 1 1995,
527-535.
(27) Trost, B. M.; Tamaru, Y. J. Am. Chem. Soc. 1977, 99, 3101-3113.
(28) Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 18-25.
(29) Shephard, M. J.; Paddon-Row, M. N. J. Phys. Chem. A 2000, 104,
11628-11635.
(30) Paulson, B.; Pramod, K.; Eaton, P.; Closs, G.; Miller, J. R. J. Phys.
Chem. 1993, 97, 13042-13045.
(31) Pasman, P.; Koper, N. W.; Verhoeven, J. W. Recl. TraV. Chim.
Pays-Bas 1982, 101, 363-364.
(64) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265-
322.
(32) Closs, G. L.; Calcaterra, L. T.; Green, N. J.; Penfield, K. W.; Miller,
J. R. J. Phys. Chem. 1986, 90, 3673-3683.
(65) de Rege, P. J. F.; Williams, S. A.; Therien, M. J. Science 1995,
269, 1409-1413.
(33) Asveld, E. W. H.; Kellogg, R. M. J. Org. Chem. 1982, 47, 1250-
(66) Kroon, J.; Verhoeven, J. W.; Paddon-Row: M. N.; Oliver, A.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1358-1361.
1257.
(34) Oosterbaan, W. D.; Koeberg, M.; Piris, J.; Havenith, R. W. A.;
van Walree, C. A.; Wegewijs, B. R.; Jenneskens, L. W.; Verhoeven, J. W.
J. Phys. Chem. A 2001, 105, 5984-5989.
(67) Brandsma, L.; Verkruijsse, H. D. PreparatiVe Polar Organometallic
Chemistry 1; Springer-Verlag: Berlin, 1987; pp 7-8.
(68) Eaton, D. F. Pure Appl. Chem. 1988, 60, 1107-1114.
(69) Willemse, R. J.; Piet, J. J.; Warman, J. M.; Hartl, F.; Verhoeven,
J. W.; Brouwer, A. M. J. Am. Chem. Soc. 2000, 122, 3721-3730.
(70) Marsman, A. W. Functionalized Oligo(Cyclohexylidenes). Semi-
rigid Molecular Rods for Crystal Engineering, Through-Bond Orbital
Interactions and Self-Assembly. Thesis, Utrecht University, Utrecht, The
Netherlands, 1999, Chapter 8.
(35) Oosterbaan, W. D.; Havenith, R. W. A.; van Walree, C. A.;
Jenneskens, L. W.; Gleiter, R.; Kooijman, H.; Spek, A. L. J. Chem. Soc.,
Perkin Trans. 2 2001, 1066-1074.
(36) Hoogesteger, F. J.; van Lenthe, J. H.; Jenneskens, L. W. Chem.
Phys. Lett. 1996, 259, 178-184.
(37) Havenith, R. W. A.; van Lenthe, J. H.; Jenneskens, L. W.;
Hoogesteger, F. J. Chem. Phys. 1997, 225, 139-152.