C O M M U N I C A T I O N S
Table 2. Borodesilylation of 3
In summary, we have established a general synthetic scheme
for tamoxifen-type tetrasubstituted olefins based on the novel
Cu-catalyzed carbomagnesation across alkynyl(2-pyridyl)silane. By
using this synthetic scheme, we could prepare a wide array of
electronically and structurally diverse tetrasubstituted olefins in a
regiocontrolled, stereocontrolled, and diversity-oriented manner.
Noteworthy features are that (i) the three aryl groups, which are
believed to be important (essential) for anti-estrogenic activity, can
be varied at will because they all stem from readily available aryl
iodides, and (ii) any stereo- and regioisomers can, in principle, be
prepared by simply changing the applying order of aryl iodides
into the sequence. Although we have focused our investigation on
the synthesis of tamoxifen-type olefins in this study, our synthetic
scheme should be easily expanded to the construction of a more
general tetrasubstituted olefin structure.
run
3 (E/Z)
4
yield (Z/E)
1
3aa (94/6)
3ac (88/12)
3ad (95/5)
3ae (94/6)
3gc (92/8)
3gh (92/8)
4aa
4ac
4ad
4ae
4gc
4gh
82% (98/2)
65% (94/6)
80% (99/1)
64% (>99/1)
77% (95/5)
73% (97/3)
2a
3
4
5a
6
a 3.3 equiv of BCl3 was employed. After the treatment with pinacol, the
mixture was treated with Cs2CO3 (10 equiv) in toluene (80 °C, 11 h).
Table 3. Suzuki-Miyaura Coupling of 4 with Aryl Iodides
Acknowledgment. This work was supported by a Grant-in-Aid
for Scientific Research from the Ministry of Education, Culture,
Sports, Science, and Technology, Japan.
Supporting Information Available: Experimental procedures and
analytical and spectroscopic data of compounds (PDF). This material
run
4 (Z/E)
Ar3
5
yield (E/Z)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
4aa (97/3)
4aa (97/3)
4ac (94/6)
4ac (94/6)
4ac (94/6)
4ad (99/1)
4ad (99/1)
4ad (99/1)
4ad (99/1)
4gc (95/5)
4gc (95/5)
4gc (97/3)
4gh (97/3)
4gh (99/1)
4gh (99/1)
4-Me2N(CH2)2OC6H4 (c)
4-MeC6H4 (h)
C6H5 (a)
4-MeOC6H4 (b)
3-MeOC6H4 (i)
4-MeOC6H4 (b)
4-ClC6H4 (f)
2-MeOC6H4 (j)
3-pyridyl (k)
4-MeOC6H4 (b)
3-MeC6H4 (l)
3-thienyl (m)
5aac
5aah
5aca
5acb
5aci
5adb
5adf
5adj
5adk
5gcb
5gcl
95% (99/1)
96% (99/1)
98% (5/95)
95% (5/95)
92% (95/5)
97% (>99/1)
90% (>99/1)
95% (>99/1)
67% (>99/1)
80% (4/96)
82% (98/2)
87% (99/1)
93% (>99/1)
98% (>99/1)
99% (>99/1)
References
(1) (a) DeGregorio, M. W.; Wiebe, V. J. Tamoxifen and Breast Cancer, 2nd
ed.; Yale University Press: New Haven, CT, 1999. (b) Levenson, A. S.;
Jordan, V. C. Eur. J. Cancer 1999, 35, 1628.
(2) Schreiber, S. L. Science 2000, 287, 1964.
(3) Robertson, D. W.; Katzenellenbogen, J. A. J. Org. Chem. 1982, 47, 2387.
(4) (a) Gauthier, S.; Mailhot, J.; Labrie, F. J. Org. Chem. 1996, 61, 3890. (b)
Meegan, M. J.; Hughes, R. B.; Lloyd, D. G.; Williams, D. C.; Zisterer,
D. M. J. Med. Chem. 2001, 44, 1072.
(5) While the Z-isomer of tamoxifen is antiestrogenic, the E-isomer is an
estrogen agonist. Harper, M. J.; Walpole, A. L. Nature 1966, 212, 87.
(6) (a) Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1985, 50, 2121. (b)
Cummins, C. H. Synth. Commun. 1995, 25, 4071. (c) Stu¨demann, T.;
Ibrahim-Ouali, M.; Knochel, P. Tetrahedron 1998, 54, 1299. (d) Brown,
S. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 7076.
5gcm
5ghn
5gho
5ghp
2-MeC6H4 (n)
3,5-F2C6H3 (o)
1-naphthyl (p)
(7) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.; Kamei, T.; Yoshida, J.
J. Am. Chem. Soc. 2001, 123, 11577.
from silicon met with no success. Thus, we turned our attention to
Si/B exchange reaction borodesilylation of 3 to achieve the
installation of a third aryl group (Ar3) by means of Suzuki-Miyaura
coupling at the resulting C-B bond.16
(8) For a review, see: Itami, K.; Mitsudo, K.; Nokami, T.; Kamei, T.; Koike,
T.; Yoshida, J. J. Organomet. Chem. 2002, 653, 105.
(9) Selected recent examples of removable directing group strategy: (a) Breit,
B. Chem.-Eur. J. 2000, 6, 1519. (b) Ishiyama, T.; Hartwig, J. J. Am. Chem.
Soc. 2000, 122, 12043. (c) Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi,
F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849. (d) Krauss, I. J.; Wang,
C. C. Y.; Leighton, J. L. J. Am. Chem. Soc. 2001, 123, 11514. (e) Buezo,
N. D.; de la Rosa, J. C.; Priego, J.; Alonso, I.; Carretero, J. C. Chem.-
Eur. J. 2001, 7, 3890. (f) Jun, C. H.; Moon, C. W.; Lee, D. Y. Chem.-
Eur. J. 2002, 8, 2422. (g) Ko, S.; Na, Y.; Chang, S. J. Am. Chem. Soc.
2002, 124, 750. (h) Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem.
Soc. 2003, 125, 3430.
(10) Carbometalation across alkynylsilanes: (a) Obayashi, M.; Utimoto, K.;
Nozaki, H. Tetrahedron Lett. 1977, 1805. (b) Snider, B. B.; Karras, M.;
Conn, R. S. E. J. Am. Chem. Soc. 1978, 100, 4624. (c) Westmijze, H.;
Kleijn, H.; Vermeer, P. J. Organomet. Chem. 1984, 276, 317. (d)
Reference 6a.
The stereoselective borodesilylation17 of 3 was found to occur
with BCl3 in CH2Cl2 at -41 °C, and subsequent treatment of this
mixture with pinacol and triethylamine (one-pot) afforded 4 in good
yield with retention of stereochemistry (Table 2). For compounds
bearing the tamoxifen basic side chain (Me2NCH2CH2O-) such
as 3ac and 3gc, it was necessary to treat the mixture with a base
such as Cs2CO3 to remove a boron residue coordinated to the
nitrogen. Interestingly, it was found that the isomeric purities of 4
were greater that those of the starting alkenylsilanes in all cases
examined. This may be due to the reactivity difference of isomeric
alkenylsilanes in borodesilylation.
(11) For a review on directed alkyne carbometalation, see: Fallis, A. G.;
Forgione, P. Tetrahedron 2001, 57, 5899.
(12) Fu has already established that Pd/P(t-Bu)3 is an excellent catalyst for
Suzuki-Miyaura, Negishi, and Migita-Kosugi-Stille cross-coupling
reactions. (a) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
122, 4020. (b) Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719. (c)
Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 6343.
(13) (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94,
4374. (b) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun.
1972, 144. (c) Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.;
Kondo, K. J. Org. Chem. 1979, 44, 2408.
(14) When the cross-coupling step was performed at room temperature, 3 could
be obtained in higher stereoselectivity (usually greater than 99%) at the
expense of a lower chemical yield (30-50%).
(15) Hiyama, T.; Shirakawa, E. Top. Curr. Chem. 2002, 219, 61.
(16) Miyaura, N. Top. Curr. Chem. 2002, 219, 11.
Finally, the Suzuki-Miyaura coupling of 4 with aryl iodides
(Ar3I) afforded the targeted tamoxifen-type tetrasubstituted olefin
5. An extensive optimization of this final step revealed that the
catalyst/base/additive combination of Pd[P(t-Bu)3]2/NaOH/H2O
(5 mol %, 3.0 equiv, 3.0 equiv) effects the desired cross-coupling
in extremely high yields in THF at 60 °C (Table 3).12a A variety of
aryl groups including heteroaryl groups can be installed in the final
tetrasubstituted olefin structure. Tamoxifen (5aca) and its derivatives
can be prepared with ease. It should also be mentioned that this
final cross-coupling step also helped to increase the isomeric purities
of the final olefins 5 (>99% in most cases) presumably because of
the reactivity difference of isomeric 4 in the cross-coupling reaction.
(17) Babudri, F.; Farinola, G. M.; Fiandanesse, V.; Mazzone, L.; Naso, F.
Tetrahedron 1998, 54, 1085.
JA037566I
9
J. AM. CHEM. SOC. VOL. 125, NO. 48, 2003 14671