10.1002/anie.201808578
Angewandte Chemie International Edition
COMMUNICATION
the alkyne-de Mayo reaction in target-oriented synthesis are
easily conceivable.[21]
Kolding, J. L. Alleva, B. M. Stoltz, Angew. Chem. Int. Ed. 2011, 50,
6814–6818; Angew. Chem. 2011, 123, 6946–6950.
M. Cavazza, F. Pietra, J. Chem. Soc., Chem. Commun. 1986, 1480–
1481.
[6]
Acknowledgements
[7]
[8]
L. M. Tedaldi, PhD thesis, University College London, UK, 2011.
As recently noted by Aitken and co-workers, a different outcome of a
Financial contributions by the Beilstein-Institut (graduate
research fellowship to D.T.), the DFG (HI628/13-1 to M.H.;
Emmy-Noether grant RE3630 to J.R.), as well as by the TU
Dortmund are gratefully acknowledged.
photochemical experiment can be observed when deploying
a
polychromatic light source compared to fluorescent lamps: J. Buendia,
Z. Chang, H. Eijsberg, R. Guillot, A. Frongia, F. Secci, J. Xie, S. Robin,
T. Boddaert, D. J. Aitken, Angew. Chem. Int. Ed. 2018, 57, 6592–6596;
Angew. Chem. 2018, 130, 6702–6706.
[9]
For the UV/vis spectra of 3b and 5b in acetonitrile, see the Supporting
Information.
Keywords: cascade reaction • cycloaddition •
cyclohepta[b]indole • photochemistry • ring expansion
[10] For the photochemistry of 2,4-cycloheptadienones, see: a) H. Hart, T.
Takino, J. Am. Chem. Soc. 1971, 93, 720–725; b) H. Hart, A. F. Naples,
J. Am. Chem. Soc. 1972, 94, 3256–3257; c) H. Hart, Pure Appl. Chem.
1973, 33, 247–267.
[1]
For selected reviews, see: a) J. Iriondo-Alberdi, M. F. Greaney, Eur. J.
Org. Chem. 2007, 4801–4815; b) J. P. Hehn, C. Müller, T. Bach in
Handbook of Synthetic Photochemistry (Eds.: A. Albini, M. Fagnoni),
Wiley-VCH, Weinheim, 2010, pp. 171–215; c) T. Bach, J. P. Hehn,
Angew. Chem. Int. Ed. 2011, 50, 1000–1045; Angew. Chem. 2011, 123,
1032–1077; d) M. D. Kärkäs, J. A. Porco, C. R. J. Stephenson, Chem.
Rev. 2016, 116, 9683–9747; e) S. Poplata, A. Tröster, Y.-Q. Zou, T.
Bach, Chem. Rev. 2016, 116, 9748–9815.
[11] Lack of chemoselectivity is caused by protodestannylation of 3o to 3a
providing mixtures of 5o and 5a.
[12] Notably, the corresponding vinylogous amide (X = NH) was completely
resistant to the conditions of our photochemical experiment.
[13] For computational studies on the thermodynamics of the ring-expansion
of 3b, see the Supporting Information.
[14] Contaminated with the allene 12.
[15 ] CCDC 1855390, 1830101 and 1830100 (5v, 6a and 7a) contain the
supplementary crystallographic data for this paper. These data are
provided free of charge by The Cambridge Crystallographic Data
Centre.
[2]
For recent (2+2) photocycloadditions deploying vinylogous carboxylic
acid derivatives, see: a) L. M. Tedaldi, J. R. Baker, Org. Lett. 2009, 11,
811–814; b) D. A. Fort, T. J. Woltering, M. Nettekoven, H. Knust, T.
Bach, Angew. Chem. Int. Ed. 2012, 51, 10169–10172; Angew. Chem.
2012, 124, 10316–10319; c) R. Brimioulle, T. Bach, Angew. Chem. Int.
Ed. 2014, 53, 12921–12924; Angew. Chem. 2014, 126, 13135–13138;
d) D. Blanco-Ania, S. A. Gawade, L. J. L. Zwinkels, L. Maartense, M. G.
Bolster, J. C. J. Benningshof, F. P. J. T. Rutjes, Org. Process Res. Dev.
2016, 20, 409–413.
[16] G. A. Kraus, D. Zheng, Synlett 1993, 71–72.
[17] a) A. D. Patil, A. J. Freyer, L. Killmer, P. Offen, B. Carte, A. J. Jurewicz,
R. K. Johnson, Tetrahedron 1997, 53, 5047–5060; b) F. Marion, D. E.
Williams, B. O. Patrick, I. Hollander, R. Mallon, S. C. Kim, D. M. Roll, L.
Feldberg, R. Van Soest, R. J. Andersen, Org. Lett. 2006, 8, 321–324; c)
E. Stempel, T. Gaich, Acc. Chem. Res. 2016, 49, 2390–2402.
[18] For recent approaches to cyclohepta[b]indoles, see: a) U. K. Mishra, S.
Yadav, S. S. V. Ramasastry, J. Org. Chem. 2017, 82, 6729–6737; b) N.
Hamada, Y. Yoshida, S. Oishi, H. Ohno, Org. Lett. 2017, 19, 3875–
3878; c) J. Kaufmann, E. Jäckel, E. Haak, Angew. Chem. Int. Ed. 2018,
57, 5908–5911; Angew. Chem. 2018, 130, 6010–6014; d) A. S. Jadhav,
Y. A. Pankhade, R. Vijaya Anand, J. Org. Chem. 2018, 83, 8615–8626;
e) B. Cheng, G. Volpin, J. Morstein, D. Trauner, Org. Lett. 2018, 20,
4358–4361; f) C. Gelis, G. Levitre, J. Merad, P. Retailleau, L. Neuville,
G. Masson, Angew. Chem. Int. Ed. 2018, 57, 12121–12125; Angew.
Chem. 2018, 130, 12297–12301
[3]
[4]
a) P. De Mayo, H. Takeshita, A. B. M. A. Sattar, Proc. Chem. Soc. 1962,
119; b) P. De Mayo, Acc. Chem. Res. 1971, 4, 41–47; c) Oppolzer, W.
Acc. Chem. Res. 1982, 15, 135–141; For further examples of the de
Mayo reaction, see the reviews [1b–e].
For selected examples, see: a) J. D. Winkler, R. D. Scott, P. G. Williard,
J. Am. Chem. Soc. 1990, 112, 8971–8975; b) J. D. Winkler, J. M. Axten,
J. Am. Chem. Soc. 1998, 120, 6425–6426; c) J. D. White, D. C. Ihle,
Org. Lett. 2006, 8, 1081–1084; d) J. D. Winkler, J. R. Ragains, Org. Lett.
2006, 8, 4031–4033; e) G. Lutteke, R. AlHussainy, P. J. Wrigstedt, B. T.
B. Hue, R. de Gelder, J. H. van Maarseveen, H. Hiemstra, Eur. J. Org.
Chem. 2008, 925–933; f) A. J. A. Roupany, J. R. Baker, RSC Adv. 2013,
3, 10650–10653.
[19] a) P. G. Bauslaugh, Synthesis 1970, 287–300; b) D. I. Schuster, G.
Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3–22.
[5]
For selected examples, see: a) T. Z. Wang, L. A. Paquette, J. Org.
Chem. 1986, 51, 5232–5234; b) P. Gerber, R. Keese, Tetrahedron Lett.
1992, 33, 3987–3988; c) I. Mancini, M. Cavazza, G. Guella, F. Pietra, J.
Chem. Soc., Perkin Trans. 1 1994, 2181–2185. d) J. D. Winkler, E. C.
McLaughlin, Org. Lett. 2005, 7, 227–229; e) M. Le Liepvre, J. Ollivier, D.
J. Aitken, Eur. J. Org. Chem. 2009, 5953–5962; f) L. M. Tedaldi, A. E.
Aliev, J. R. Baker, Chem. Commun. 2012, 48, 4725–4727; g) L. D.
Elliott, J. P. Knowles, P. J. Koovits, K. G. Maskill, M. J. Ralph, G.
Lejeune, L. J. Edwards, R. I. Robinson, I. R. Clemens, B. Cox, D. D.
Pascoe, G. Koch, M. Eberle, M. B. Berry, K. I. Booker-Milburn, Chem.
Eur. J. 2014, 20, 15226–15232; h) F. Hernvann, G. Rasore, V. Declerck,
D. J. Aitken, Org. Biomol. Chem. 2014, 12, 8212–8222; i) R. Flores, J.
Font, R. Alibés, M. Figueredo, Chem. Eur. J. 2016, 22, 3835–3845; j) C.
Brenninger, A. Pöthig, T. Bach, Angew. Chem. Int. Ed. 2017, 56, 4337–
4341; Angew. Chem. 2017, 129, 4401–4405; For enone–alkyne (2+2)
photocycloadditions followed by a (formal) electrocyclic ring opening,
see: a) M. J. Ralph, D. C. Harrowven, S. Gaulier, S. Ng, K. I. Booker-
Milburn, Angew. Chem. Int. Ed. 2015, 54, 1527–1531; Angew. Chem.
2015, 127, 1547–1551; b) J. J. Day, R. M. McFadden, S. C. Virgil, H.
[20] a) O. L. Chapman, D. J. Pasto, G. W. Borden, A. A. Griswold, J. Am.
Chem. Soc. 1962, 84, 1220–1224; (b) P. J. Wagner, K. Nahm, J. Am.
Chem. Soc. 1987, 109, 6528–6530.
[21] D. Tymann, U. Bednarzick, L. Iovkova-Berends, M. Hiersemann Org.
Lett. 2018, 20, 4072‒4076.
This article is protected by copyright. All rights reserved.