C O M M U N I C A T I O N S
Table 1. Thermolyses of 5a in the Presence of Saltsa,b
oxirane, with both retention and inversion of configuration, and
the corresponding olefin. It is interesting that three different products
can be selectively obtained from a single compound by ap-
propriately tuning the conditions.
Acknowledgment. This work was partially supported by Grants-
in-Aid for The 21st Century COE Program for Frontiers in
Fundamental Chemistry (T.K.) and for Scientific Research (T.K.)
from the Ministry of Education, Culture, Sports, Science and
Technology of Japan. We thank Central Glass and Tosoh Finechem
Corporation for the gifts of organofluorine compounds and alkyl-
lithiums, respectively.
yieldsc (%)
entry
solvent
time (h)
additive
none
none
none
5a
6
7
8
9
1
2
3
4
5
6
7
8
9
o-xylene-d10
o-xylene-d10
CD3CN
CD3CN
CD3CN
CD3CN
CD3CN
CD3CN
PhCN
17
48
48
5
98
90 89
0
0
0
0
2
2
0
0
0
0
0
2
52 46 48
19 80 80
12 10 88
56 18 44
68 13 32
112.5 none
0
10
10
10
10
6
LiBr
LiI
(n-Bu)4NBr
71
19
18
Supporting Information Available: Experimental procedures and
spectral data for 1, 3a, 3b, 4a, 4b, 5a, 5b, and 10a (PDF), and data for
the X-ray crystallographic analysis of 5a (CIF). This material is
LiBPh4‚3DME 10 <1 <1 85 <1
PhLi 74 0
0
0
0
References
a Thermolyses were carried out at 220 °C for entry 1 and 140 °C for
entries 2-9. b Rearranged ketone and tert-butylbenzene were omitted for
clarity in Table 1. c Yields were calculated on the basis of the molar ratios
with respect to 5a. Unreacted starting material 5a was recovered.
(1) (a) Ramirez, F.; Smith, C. P.; Pilot, J. F. J. Am. Chem. Soc. 1968, 90,
6726. (b) Vedejs, E.; Snoble, K. A. J. J. Am. Chem. Soc. 1973, 95, 5778.
(c) Vedejs, E.; Meier, G. P.; Snoble, K. A. J. J. Am. Chem. Soc. 1981,
103, 2823. (d) Vedejs, E.; Marth, C. Tetrahedron Lett. 1987, 28, 3445.
(e) Maryanoff, B.; Reitz, A. B. Chem. ReV. 1989, 89, 863. (f) Kawashima,
T.; Kato, K.; Okazaki, R. J. Am. Chem. Soc. 1992, 114, 4008. (g)
Kawashima, T.; Kato, K.; Okazaki, R. Angew. Chem. Int. Ed. Engl. 1993,
32, 869. (h) Kawashima, T.; Iijima, T.; Kikuchi, H.; Okazaki, R.
Phosphorus, Sulfur Silicon 1999, 144-146, 149.
Scheme 2
(2) (a) Henry, M.; Wittig, G. J. Am. Chem. Soc. 1960, 82, 563. (b) Freeman,
B. H.; Lloyd, D.; Singer, M. I. C. Tetrahedron 1972, 28, 343. (c) Huang,
Y.-Z.; Shen, Y. C. AdV. Organomet. Chem. 1982, 20, 115. (d) Huang,
Y.-Z.; Liao, Y.; Chen, C. J. Chem. Soc., Chem. Commun. 1990, 85. (e)
Lloyd, D.; Chen, C.; Huang, Y.-Z.; Shen, Y.; Liao, Y. Heteroatom Chem.
1990, 1, 49. (f) Liao, Y.; Huang, Y.-Z.; Zhang, L.-J.; Chen, C. J. Chem.
Res. (S) 1990, 388. (g) Gosney, I. In The Chemistry of Organic Arsenic,
Antimony, and Bismuth Compounds; Patai, S., Ed.; John Wiley&Sons:
New York, 1994; Chapter 16, pp 657-693. (h) Matano, Y. J. Chem. Soc.
Perkin Trans. 1 1994, 2703.
(3) Naito, T.; Nagase, S.; Yamataka, H. J. Am. Chem. Soc. 1994, 116, 10080.
(4) Perozzi, E. F.; Michalak, R. S.; Figuly, G. D.; Stevenson, W. H., III;
Dess, D. B.; Ross, M. R.; Martin, J. C. J. Org. Chem. 1981, 46, 1049.
(5) (a) Akiba, K.-y.; Fujikawa, H.; Sunaguchi, Y.; Yamamoto, Y. J. Am. Chem.
Soc. 1987, 109, 1245. (b) Yamamoto, Y.; Fujikawa, H.; Fujishima, H.;
Akiba, K.-y. J. Am. Chem. Soc. 1989, 111, 2276.
of a lithium cation and an oxygen atom of 5a, and the nucleophilic
attack of bromide ion on the antimony atom. Oxirane 9 can be
obtained by the backside attack of the oxide anion of the anti-
betaine type intermediate B (Scheme 2).
(6) 5a: colorless crystals from hexane; mp 189-190 °C dec; 1H NMR (500
3
MHz, CDCl3) δ 1.30 (s, 9H), 6.09 (s, 1H), 6.65 (d, JHH ) 7.5 Hz, 2H),
3
6.94 (t, 3JHH ) 7.4 Hz, 2H), 7.04 (t, JHH ) 7.5 Hz, 1H), 7.16-7.19 (m,
3
3
5H), 7.30 (br d, JHH ) 6.4 Hz, 2H), 7.55 (d, JHH ) 8.4 Hz, 2H), 7.68
Interestingly, thermolysis of 5a in the presence of lithium
tetraphenylborate‚3dimethoxyethane (LiBPh4‚3DME) gave olefin
8 (85%) selectively, together with 5a (10%) and trace amounts of
6, 7, and 9 (entry 8). Other products containing antimony and the
Martin ligand were obtained as a complex mixture, and they could
3
3
3
(t, JHH ) 7.9 Hz, 1H), 7.74 (t, JHH ) 7.1 Hz, 1H), 7.87 (br d, JHH
)
7.3 Hz, 1H), 8.19 (d, JHH ) 7.4 Hz, 1H); 13C{1H} NMR (126 MHz,
3
2
CDCl3) δ 31.1 (s, CH3), 35.1 (s), 78.7 (s, CH), 81.7 (q, JCF ) 28 Hz),
2
1
1
82.1 (sept, JCF ) 30 Hz), 123.38 (q, JCF ) 288 Hz), 123.41 (q, JCF
)
1
288 Hz), 124.5 (q, JCF ) 288 Hz), 126.2 (s), 126.4 (s), 127.1 (s), 127.3
(s), 127.4 (s), 127.8 (s), 128.2 (s), 128.3 (s), 128.5 (s), 130.1 (s), 131.3
(s), 132.3 (s), 132.4 (s), 133.5 (s), 134.1 (s), 136.5 (s), 137.2 (s), 156.4
1
not be identified by H and 19F NMR spectroscopy, but FAB-MS
(s); 19F NMR (470 MHz, CDCl3) δ -79.3 (s, 3F), -76.8 (q, JFF ) 8.2
4
Hz, 3F), -74.3 (q, JFF ) 8.2 Hz, 3F); MS (FAB) m/z 761 (M + H+),
4
of the reaction mixture showed a peak at m/z 573, which could be
assigned to the tert-butylphenyl(phenyl)benzoxastibonium ion. It
is expected that formation of 8 involves the migration of a phenyl
group from the boron atom of tetraphenylborate to the antimony
atom of 5a, followed by thermal decomposition of the hexacoor-
dinate 1,2-oxastibetanide C (Scheme 2).11 Actually, C (which was
alternatively generated by the reaction of 5a with PhLi in THF at
0 °C) gave 8 (74%) upon heating at 140 °C after changing the
solvent from THF to benzonitrile (entry 9). Hydrolysis of C
provided 2-hydroxyalkylstiborane 10a (94%) (Scheme 1), and the
reaction of 10a with LiH gave C at room temperature quantitatively.
These results suggest that hexacoordinate 1,2-oxastibetanide C is
an intermediate in the olefin formation reaction from 5a in the
presence of LiBPh4‚3DME.
691 (M+ - CF3), 648, 586, 513, 496, 481, 427, 335, 273, 185, 115, 57;
Anal. Calcd for C34H28F9O2Sb: C, 53.64; H, 3.71. Found C, 53.68; H,
3.89.
(7) Crystal data for 5a: C34H28F9O2Sb, FW ) 761.31, triclinic, space group
P-1, a ) 9.733(2) Å, b ) 10.284(5) Å, c ) 36.391(7) Å, R ) 97.523(6)°,
â ) 90.015(13)°, γ ) 118.133(7)°, V ) 3176.6(17) Å3, Z ) 4, Dc
)
1.592 g cm-3. The final cycle of full-matrix least-squares refinement was
based on 10995 observed reflections and 835 variable parameters and
converged at R1 ) 0.0988 (I > 2σ(I)) and wR2 (all data) ) 0.1917 with
a GOF ) 1.382.
(8) Akiba, K.-y. In Chemistry of HyperValent Compounds; Akiba, K.-y., Ed.;
Wiley-VCH: New York, 1999; Chapter 2, pp 9-47.
(9) (a) Kawashima, T.; Ohno, F.; Okazaki, R.; Ikeda, H.; Inagaki, S. J. Am.
Chem. Soc. 1996, 118, 12455. (b) Ohno, F.; Kawashima, T.; Okazaki, R.
Chem. Commun. 1997, 1671.
(10) (a) Moc, J.; Morokuma, K. J. Am. Chem. Soc. 1995, 117, 11790. (b) Finet,
J.-P. Ligand Coupling Reaction with Heteroatomic Compounds; Elsevi-
er: Netherlands, 1998; pp 9-46.
(11) Olefin synthesis via a hexacoordinate 1,2-oxastibetanide, see: Kojima,
S.; Takagi, R.; Akiba, K.-y. J. Am. Chem. Soc. 1997, 119, 5970.
We have found that thermolyses of a pentacoordinate 1,2-
oxastibetane under suitable conditions give the corresponding
JA037586K
9
J. AM. CHEM. SOC. VOL. 125, NO. 44, 2003 13347